73,555 research outputs found
Recommended from our members
Impacts of model calibration on high-latitude land-surface processes: PILPS 2(e) calibration/validation experiments
In the PILPS 2(e) experiment, the Snow Atmosphere Soil Transfer (SAST) land-surface scheme developed from the Biosphere-Atmosphere Transfer Scheme (BATS) showed difficulty in accurately simulating the patterns and quantities of runoff resulting from heavy snowmelt in the high-latitude Torne-Kalix River basin (shared by Sweden and Finland). This difficulty exposes the model deficiency in runoff formations. After representing subsurface runoff and calibrating the parameters, the accuracy of hydrograph prediction improved substantially. However, even with the accurate precipitation and runoff, the predicted soil moisture and its variation were highly "model-dependent". Knowledge obtained from the experiment is discussed. © 2003 Elsevier Science B.V. All rights reserved
Generation of GHZ and W states for stationary qubits in spin network via resonance scattering
We propose a simple scheme to establish entanglement among stationary qubits
based on the mechanism of resonance scattering between them and a
single-spin-flip wave packet in designed spin network. It is found that through
the natural dynamical evolution of an incident single-spin-flip wave packet in
a spin network and the subsequent measurement of the output single-spin-flip
wave packet,multipartite entangled states among n stationary qubits,
Greenberger-Horne-Zeilinger (GHZ) and W states can be generated.Comment: 8 pages, 6 figure
PHENIX Measurement of High- Hadron-hadron and Photon-hadron Azimuthal Correlations
High- hadron-hadron correlations have been measured with the PHENIX
experiment in \Cu and \pp collisions at GeV. A
comparison of the jet widths and yields between the two colliding systems
allows us to study the medium effect on jets. We also present a first
measurement of direct photon-hadron correlations in \Au and \pp collisions.
We find that the near-side yields are consistent with zero in both systems. By
comparing the jet yields on the away side, we observe a suggestion of the
expected suppression of hadrons associated with photons in \Au collisions.Comment: 5 pages, proceeding for parallel talk on Quark Matter 200
p-wave Feshbach molecules
We have produced and detected molecules using a p-wave Feshbach resonance
between 40K atoms. We have measured the binding energy and lifetime for these
molecules and we find that the binding energy scales approximately linearly
with magnetic field near the resonance. The lifetime of bound p-wave molecules
is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l
= 0 angular momentum projections, respectively. At magnetic fields above the
resonance, we detect quasi-bound molecules whose lifetime is set by the
tunneling rate through the centrifugal barrier
Leptogenesis origin of Dirac gaugino dark matter
The Dirac nature of the gauginos (and also the Higgsinos) can be realized in
-symmetric supersymmetry models. In this class of models, the Dirac bino (or
wino) with a small mixture of the Dirac Higgsinos is a good dark matter
candidate. When the seesaw mechanism with Higgs triplet superfields is
implemented to account for the neutrino masses and mixing, the leptogenesis
driven by the heavy triplet decay is shown to produce not only the
matter-antimatter asymmetry but also the asymmetric relic density of the Dirac
gaugino dark matter. The dark matter mass turns out to be controlled by the
Yukawa couplings of the heavy Higgs triplets, and it can be naturally at the
weak scale for a mild hierarchy of the Yukawa couplings.Comment: 9 pages. Restructured for clear presentation, corrected some errors
and typos. No change in conclusio
Recommended from our members
Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.
A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS
Coulomb Distortion Effects for (e,e'p) Reactions at High Electron Energy
We report a significant improvement of an approximate method of including
electron Coulomb distortion in electron induced reactions at momentum transfers
greater than the inverse of the size of the target nucleus. In particular, we
have found a new parametrization for the elastic electron scattering phase
shifts that works well at all electron energies greater than 300 . As an
illustration, we apply the improved approximation to the reaction
from medium and heavy nuclei. We use a relativistic ``single particle'' model
for as as applied to and to recently measured data
at CEBAF on to investigate Coulomb distortion effects while
examining the physics of the reaction.Comment: 14 pages, 3 figures, PRC submitte
Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study
In order to gain insights into the origin of colossal magneto-resistance
(CMR) in manganese oxides, we performed a ^{139}La NMR study in the
double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie
temperature T_C=126 K, applying a magnetic field induces a long-range
ferromagnetic order that persists up to T=330 K. The critical field at which
the induced magnetic moment is saturated coincides with the field at which the
CMR effect reaches to a maximum. Our results therefore indicate that the CMR
observed above T_C in this compound is due to the field-induced ferromagnetism
that produces a metallic state via the double exchange interaction
- …