2,198 research outputs found

    Analysis of Indirect Uses of Interrogative Sentences Carrying Anger

    Get PDF
    PACLIC 21 / Seoul National University, Seoul, Korea / November 1-3, 200

    Product Name Classification for Product Instance Distinction

    Get PDF

    Accident risk associated with smartphone addiction: A study on university students in Korea

    Get PDF
    The smartphone is one of the most popular devices, with the average smartphone usage at 162 min/day and the average length of phone usage at 15.79 hr/week. Although significant concerns have been made about the health effects of smartphone addiction, the relationship between smartphone addiction and accidents has rarely been studied. We examined the association between smartphone addiction and accidents among South Korean university students. Methods A total of 608 college students completed an online survey that included their experience of accidents (total number; traffic accidents; falls/slips; bumps/collisions; being trapped in the subway, impalement, cuts, and exit wounds; and burns or electric shocks), their use of smartphone, the type of smartphone content they most frequently used, and other variables of interests. Smartphone addiction was estimated using Smartphone Addiction Proneness Scale, a standardized measure developed by the National Institution in Korea. Results Compared with normal users, participants who were addicted to smartphones were more likely to have experienced any accidents (OR = 1.90, 95% CI: 1.26–2.86), falling from height/slipping (OR = 2.08, 95% CI: 1.10–3.91), and bumps/collisions (OR = 1.83, 95% CI: 1.16–2.87). The proportion of participants who used their smartphones mainly for entertainment was significantly high in both the accident (38.76%) and smartphone addiction (36.40%) groups. Discussion and conclusions We suggest that smartphone addiction was significantly associated with total accident, falling/slipping, and bumps/collisions. This finding highlighted the need for increased awareness of the risk of accidents with smartphone addiction

    A New p53 Target Gene, RKIP, Is Essential for DNA Damage-Induced Cellular Senescence and Suppression of ERK Activation

    Get PDF
    Abstractp53, a strong tumor suppressor protein, is known to be involved in cellular senescence, particularly premature cellular senescence. Oncogenic stresses, such as Ras activation, can initiate p53-mediated senescence, whereas activation of the Ras-mitogen-activated protein kinase (MAPK) pathway can promote cell proliferation. These conflicting facts imply that there is a regulatory mechanism for balancing p53 and Ras-MAPK signaling. To address this, we evaluated the effects of p53 on the extracellular signal-regulated kinase (ERK) activation and found that p53 could suppress ERK activation through de novo synthesis. Through several molecular biologic analyses, we found that RKIP, an inhibitor of Raf kinase, is responsible for p53-mediated ERK suppression and senescence. Overexpression of RKIP can induce cellular senescence in several types of cell lines, including p53-deficient cells, whereas the elimination of RKIP by siRNA or forced expression of ERK blocks p53-mediated cellular senescence. These results suggested that RKIP is an essential protein for cellular senescence. Moreover, modification of the p53 serine 46 residue was critical for RKIP induction and ERK suppression as well as cellular senescence. These results indicated that RKIP is a novel p53 target gene that is responsible for p53-mediated cellular senescence and tumor suppressor protein expression

    IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model

    Get PDF
    PURPOSE. While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. METHODS. NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. RESULTS. The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b(+) and CD11c(+) cells of spleen in the IRT5-treated groups. CONCLUSIONS. Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.11Ysciescopu

    Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase

    Get PDF
    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ??-deamination of L-lysine into L-pipecolic acid using ??-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ??-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD+, (ii) a ternary complex with NAD+ and L-pipecolic acid, (iii) a ternary complex with NAD+ and L-proline, and (iv) a ternary complex with NAD+ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD+ is initially converted into NADH and then reverted back into NAD+ at a late stage of the reaction

    Intrahepatic cholangiocarcinoma arising in Caroli's disease

    Get PDF
    corecore