40,993 research outputs found

    Spin squeezing: transforming one-axis-twisting into two-axis-twisting

    Full text link
    Squeezed spin states possess unique quantum correlation or entanglement that are of significant promises for advancing quantum information processing and quantum metrology. In recent back to back publications [C. Gross \textit{et al, Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature} \textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic condensates exhibiting one-axis-twisting interactions (OAT). The noise reduction limit for the OAT interaction scales as 1/N2/3\propto 1/{N^{2/3}}, which for a condensate with N103N\sim 10^3 atoms, is about 100 times below standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the OAT spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction 1/N\propto 1/N, or an extra 10-fold improvement for N103N\sim 10^3.Comment: 4 pages, 3 figure

    Learning Latent Tree Graphical Models

    Get PDF
    We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our first algorithm, recursive grouping, builds the latent tree recursively by identifying sibling groups using so-called information distances. One of the main contributions of this work is our second algorithm, which we refer to as CLGrouping. CLGrouping starts with a pre-processing procedure in which a tree over the observed variables is constructed. This global step groups the observed nodes that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive grouping (or equivalent procedures) on much smaller subsets of variables. This results in more accurate and efficient learning of latent trees. We also present regularized versions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare the proposed algorithms to other methods by performing extensive numerical experiments on various latent tree graphical models such as hidden Markov models and star graphs. In addition, we demonstrate the applicability of our methods on real-world datasets by modeling the dependency structure of monthly stock returns in the S&P index and of the words in the 20 newsgroups dataset

    Summer and winter living coccolithophores in the Yellow Sea and the East China Sea

    Get PDF
    This paper describes the distribution of living coccolithophores (LCs) in the Yellow Sea and the East China Sea in summer and winter, and its relationship with environmental factors by canonical correspondence analysis (CCA). We carried out a series of investigations on LCs distribution in the Yellow Sea and the East China Sea in July and December 2011. 210 samples from different depths were collected from 44 stations in summer and 217 samples were collected from 45 stations in winter. Totally 20 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1000 × magnification. The dominant species of the two seasons were Gephyrocapsa oceanica, Emiliania huxleyi, Helicosphaera carteri, and Algirosphaera robusta. In summer the abundance of coccolithophore cells and coccoliths ranged 0–176.40 cells mL<sup>−1</sup>, and 0–2144.98 coccoliths mL<sup>−1</sup>, with the average values of 8.45 cells mL<sup>−1</sup>, and 265.42 coccoliths mL<sup>−1</sup>, respectively. And in winter the abundance of cells and coccoliths ranged 0–71.66 cells mL<sup>−1</sup>, and 0–4698.99 coccoliths mL<sup>−1</sup>, with the average values of 13.91 cells mL<sup>−1</sup> and 872.56 coccoliths mL<sup>−1</sup>, respectively. In summer, the LCs in surface layer were mainly observed on the coastal belt and southern part of the survey area. In winter, the LCs in surface layer had high value in the continental shelf area of section P. The comparison among section A, section F, section P and section E indicated lower species diversity and less abundance in the Yellow Sea than those in the East China Sea in both seasons. Temperature and the nitrate concentration may be the major environmental factors controlling the distribution and species composition of LCs in the studying area based on CCA. <br></br> Abbreviations: LCs: Living Coccolithophores; CCA: canonical correspondence analysis; DCM: Deep Chlorophyll Maximu

    Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    Full text link
    We study technicolor models in which all of the technifermions are color-singlets, focusing on the case in these fermions transform according to the fundamental representation of the technicolor gauge group. Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing these technicolor sectors.Comment: 17 pages, latex, 2 figure

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure

    Improvement of LHC dynamic aperture via octupole spool pieces for the nominal tunes

    Get PDF
    The dynamic aperture of the LHC optics version 5 at injection energy has been calculated for an opti-mistic error table, the so called target error table, in which erect and/or skew octupolar components were increased up to values close to realistic estimates. Correction strategies, using octupole spool pieces or the lattice octupoles, have been tested so as to recover, as much as possible, the loss in dynamic aperture

    Parton Distributions at Hadronization from Bulk Dense Matter Produced at RHIC

    Full text link
    We present an analysis of Ω\Omega, Ξ\Xi, Λ\Lambda and ϕ\phi spectra from Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV in terms of distributions of effective constituent quarks at hadronization. Consistency in quark ratios derived from various hadron spectra provides clear evidence for hadron formation dynamics as suggested by quark coalescence or recombination models. We argue that the constituent quark distribution reflects properties of the effective partonic degrees of freedom at hadronization. Experimental data indicate that strange quarks have a transverse momentum distribution flatter than that of up/down quarks consistent with hydrodynamic expansion in partonic phase prior to hadronization. After the AMPT model is tuned to reproduce the strange and up/down quark distributions, the model can describe the measured spectra of hyperons and ϕ\phi mesons very well where hadrons are formed through dynamical coalescence.Comment: 5 pages, 3 figures, two more paragraph added to address the referee's comment, figure updated to include the KET scale. Accepted version to appear in Phys. Rev.

    Primary thermometry triad at 6 mK in mesoscopic circuits

    Full text link
    Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behavior, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometer-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in-situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in-situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back-action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way toward the sub-millikelvin range with additional thermalization and refrigeration techniques.Comment: Article and Supplementar
    corecore