42,910 research outputs found
Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO
We report theoretical calculations on the effect of the multiple orbital
contribution in high-order harmonic generation (HHG) from aligned CO with
inclusion of macroscopic propagation of harmonic fields in the medium. Our
results show very good agreements with recent experiments for the dynamics of
the minimum in HHG spectra as laser intensity or alignment angle changes.
Calculations are carried out to check how the position of the minimum in HHG
spectra depends on the degrees of molecular alignment, laser focusing
conditions, and the effects of alignment-dependent ionization rates of the
different molecular orbitals. These analyses help to explain why the minima
observed in different experiments may vary.Comment: 7 figure
Propagating waves in an extremal black string
We investigate the black string in the context of the string theories. It is
shown that the graviton is the only propagating mode in the (2+1)--dimensional
extremal black string background. Both the dilation and axion turn out to be
non-propagating modes.Comment: Minor corrections, 11 pages in ReVTeX, no figure
Giant frequency-selective near-field energy transfer in active--passive structures
We apply a fluctuation electrodynamics framework in combination with
semianalytical (dipolar) approximations to study amplified spontaneous energy
transfer (ASET) between active and passive bodies. We consider near-field
energy transfer between semi-infinite planar media and spherical structures
(dimers and lattices) subject to gain, and show that the combination of loss
compensation and near-field enhancement (achieved by the proximity, enhanced
interactions, and tuning of subwavelength resonances) in these structures can
result in orders of magnitude ASET enhancements below the lasing threshold. We
examine various possible geometric configurations, including realistic
materials, and describe optimal conditions for enhancing ASET, showing that the
latter depends sensitively on both geometry and gain, enabling efficient and
tunable gain-assisted energy extraction from structured surfaces
Effect of Imperceptible Vibratory Noise Applied to Wrist Skin On Fingertip Touch Evoked Potentials – An EEG Study
Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedback and improve dexterity, particularly during neurological rehabilitation. Nonetheless, the neurological bases for remote vibration enhanced sensory feedback are yet poorly understood. This study examined how imperceptible random vibration applied to the wrist changes cortical activity for fingertip sensation. We measured somatosensory evoked potentials to assess peak-to-peak response to light touch of the index fingertip with applied wrist vibration versus without. We observed increased peak-to-peak somatosensory evoked potentials with wrist vibration, especially with increased amplitude of the later component for the somatosensory, motor, and premotor cortex with wrist vibration. These findings corroborate an enhanced cortical-level sensory response motivated by vibration. It is possible that the cortical modulation observed here is the result of the establishment of transient networks for improved perception
Effect of pooling samples on the efficiency of comparative studies using microarrays
Many biomedical experiments are carried out by pooling individual biological
samples. However, pooling samples can potentially hide biological variance and
give false confidence concerning the data significance. In the context of
microarray experiments for detecting differentially expressed genes, recent
publications have addressed the problem of the efficiency of sample-pooling,
and some approximate formulas were provided for the power and sample size
calculations. It is desirable to have exact formulas for these calculations and
have the approximate results checked against the exact ones. We show that the
difference between the approximate and exact results can be large. In this
study, we have characterized quantitatively the effect of pooling samples on
the efficiency of microarray experiments for the detection of differential gene
expression between two classes. We present exact formulas for calculating the
power of microarray experimental designs involving sample pooling and technical
replications. The formulas can be used to determine the total numbers of arrays
and biological subjects required in an experiment to achieve the desired power
at a given significance level. The conditions under which pooled design becomes
preferable to non-pooled design can then be derived given the unit cost
associated with a microarray and that with a biological subject. This paper
thus serves to provide guidance on sample pooling and cost effectiveness. The
formulation in this paper is outlined in the context of performing microarray
comparative studies, but its applicability is not limited to microarray
experiments. It is also applicable to a wide range of biomedical comparative
studies where sample pooling may be involved.Comment: 8 pages, 1 figure, 2 tables; to appear in Bioinformatic
- …