57 research outputs found

    Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil:Drivers from bacterial community structures in rhizosphere

    Get PDF
    Plant growth-promoting rhizobacteria (PGPR) and rhizobia are potentially advantageous in improving plant growth in heavy metal contaminated soils. However, only limited information is available in literature on the manner through which the co-inoculation of PGPR and rhizobia can potentially supply nutrients to benefit plant growth in heavy metal contaminated soil. Accordingly, this study investigated the effects of Paenibacillus mucilaginosus (PGPR) and Sinorhizobium meliloti (rhizobia) co-inoculation on soil nutrients, enzyme activities, and microbial biomass in copper (Cu) contaminated soil planted with alfalfa (Medicago sativa). Moreover, we assessed soil bacterial community structure using high-throughput Illumina sequencing of 16S rRNA genes. Results showed that PGPR and/or rhizobia inoculation improved alfalfa growth. In particular, we found that this co-inoculation approach decreased Cu accumulation (48.6%) in shoots compared to the control (uninoculated). Both partial least squares path modeling (PLS-PM) and the relative importance of regressors in the linear models identified that enzyme activities, microbial biomass, and microbial community structure in Cu contaminated soil were major controlling variables of soil nutrient availability. The co-inoculation treatment significantly increased soil carbon (C) and nitrogen (N) concentrations by increasing urease (55.6%), saccharase (29.5%), and β-glucosidase (31.4%) activities compared to the control. Furthermore, the rhizosphere microbial community structure in the co-inoculation treatment was mainly regulated by soil N concentrations (i.e., both total N and available N) while altering alpha diversity (α-diversity). The relative abundances of Firmicutes (including biomarkers of the Bacillus genus) and Acidobacteria were enriched in the co-inoculated treatment, which can potentially improve soil nutrient availability and subsequently benefit plant growth. These findings indicated that the co-inoculation of PGPR and rhizobia plays an important role in promoting plant growth in Cu contaminated soil. This is because this approach can increase soil nutrient availability by enhancing soil enzyme activities and regulating rhizosphere microbial community structure

    Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria

    Get PDF
    Biodegradable chelant (S,S)-N,N '-ethylenediaminedisuccinic acid (EDDS) has the more advantages of enhanced metal mobility, rapid degradation, environmental friendliness, and ammonium release. However, the risk of metal and/or nitrate residues and leaching within EDDS biodegradation remains as the bottleneck for the widespread application of EDDS-induced phytoremediation. This study aims to explore if the inoculation of plant growth-promoting rhizobacteria (PGPRs) can eliminate the risk associated with the short-term application of EDDS by investigating Cu phytoextraction and soil nitrate content. Results showed that EDDS application significantly increased the copper (Cu) concentration in shoots, soil total Cu, NH4+-N and NO3--N content, but decreased plant biomass. The inoculation of PGPRs in the soil showed a strong ability to increase plant biomass, Cu phytoextraction and soil NH4+-N content, and decrease soil Cu and NO3--N content. Moreover, bacterial dominant taxa were found to be the largest contributors to soil NH4+-N and NO3--N variation, and the abundance of denitrifying bacteria (Bacteroidetes and Stenotrophomonas) decreased in the treatment with PGPRs. The risk of residual Cu and nitrate leaching was reduced by the inoculation of PGPRs without significantly changing the stability of the bacterial community. These new findings indicate that the exogenous application of beneficial rhizobacteria can provide an effective strategy to reduce the risk in metal-contaminated soils of chelant-assisted phytoextraction.</p

    Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats

    Get PDF
    OBJECTIVE: To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. METHODS: NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. RESULTS: The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). CONCLUSION: The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity

    New perspectives on microbiome and nutrient sequestration in soil aggregates during long-term grazing exclusion

    Get PDF
    15 páginas.- 5 figuras.- referencias.-Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the 2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.This work was financially supported by the National Natural Science Foundation of China (32061123007, 41977031), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020202), and the Natural Science Foundation of Hubei Province, China (2020CFA013). Manuel Delgado-Baquerizo acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 and TED2021-130908B-C41 funded by MCIN/AEI/10.13039/501100011033.Peer reviewe

    An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    No full text
    Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC) data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl) was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE), Two-Region Model (TRM), Continuous Time Random Walk (CTRW), and Fractional Advection-Dispersion Equation (FADE). It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching
    corecore