50 research outputs found

    Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures

    Get PDF
    Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors

    Diammonium Glycyrrhizinate Upregulates PGC-1α and Protects against Aβ1–42-Induced Neurotoxicity

    Get PDF
    Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ1–42-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 µM Aβ1–42 resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS), decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ1–42 exposure. All these effects induced by Aβ1–42 were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ1–42-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ1–42-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ1–42-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ1–42-induced AD mice, indicating that DG exerted potential beneficial effects on AD

    Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts

    No full text
    Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases

    Facile stoichiometric reductions in flow : an example of artemisinin

    No full text
    Stoichiometric reduction of artemisinin to dihydroartemisinin (DHA) has been successfully transferred from batch to continuous flow conditions with a significant increase in productivity and an increase in selectivity. The DHA space-time-yield of up to 1.6 kg h–1 L–1 was attained which represents a 42 times increase in throughput compared to that of conventional batch process

    Study on Alternate Fuels and Their Effect on Particulate Emissions from GDI Engines

    No full text
    With strict environmental legislations and to reduce related health hazards, there is immense focus on reducing particulates from gasoline direct injection engines. With increasing use of biofuels in the market, their blends with hydrocarbon fuels are also being considered as cleaner alternatives to gasoline. This chapter confers the addition of oxygenates to gasoline and their capacity to reduce sooting tendency compared to gasoline. Challenges related to optimizing combustion by appropriately choosing engine parameters such as start of ignition, duration of injection, etc. have been addressed. Optimizing combustion can reduce the particulate emissions, by sometimes increasing efficiency. Oxygenated fuels always have the advantage of higher oxidation of soot formed inside the cylinder, which further reduces particulate emissions. Towards the end of this chapter, disadvantages of using oxygenated fuel blends or alternate fuels are discussed
    corecore