51 research outputs found

    Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms

    Full text link
    We study the problem of designing adaptive multi-armed bandit algorithms that perform optimally in both the stochastic setting and the adversarial setting simultaneously (often known as a best-of-both-world guarantee). A line of recent works shows that when configured and analyzed properly, the Follow-the-Regularized-Leader (FTRL) algorithm, originally designed for the adversarial setting, can in fact optimally adapt to the stochastic setting as well. Such results, however, critically rely on an assumption that there exists one unique optimal arm. Recently, Ito (2021) took the first step to remove such an undesirable uniqueness assumption for one particular FTRL algorithm with the 12\frac{1}{2}-Tsallis entropy regularizer. In this work, we significantly improve and generalize this result, showing that uniqueness is unnecessary for FTRL with a broad family of regularizers and a new learning rate schedule. For some regularizers, our regret bounds also improve upon prior results even when uniqueness holds. We further provide an application of our results to the decoupled exploration and exploitation problem, demonstrating that our techniques are broadly applicable.Comment: Update the camera-ready version for NeurIPS 202

    Automated Blood Cell Detection and Counting via Deep Learning for Microfluidic Point-of-Care Medical Devices

    Get PDF
    Automated in-vitro cell detection and counting have been a key theme for artificial and intelligent biological analysis such as biopsy, drug analysis and decease diagnosis. Along with the rapid development of microfluidics and lab-on-chip technologies, in-vitro live cell analysis has been one of the critical tasks for both research and industry communities. However, it is a great challenge to obtain and then predict the precise information of live cells from numerous microscopic videos and images. In this paper, we investigated in-vitro detection of white blood cells using deep neural networks, and discussed how state-of-the-art machine learning techniques could fulfil the needs of medical diagnosis. The approach we used in this study was based on Faster Region-based Convolutional Neural Networks (Faster RCNNs), and a transfer learning process was applied to apply this technique to the microscopic detection of blood cells. Our experimental results demonstrated that fast and efficient analysis of blood cells via automated microscopic imaging can achieve much better accuracy and faster speed than the conventionally applied methods, implying a promising future of this technology to be applied to the microfluidic point-of-care medical devices

    No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions

    Full text link
    Existing online learning algorithms for adversarial Markov Decision Processes achieve O(T){O}(\sqrt{T}) regret after TT rounds of interactions even if the loss functions are chosen arbitrarily by an adversary, with the caveat that the transition function has to be fixed. This is because it has been shown that adversarial transition functions make no-regret learning impossible. Despite such impossibility results, in this work, we develop algorithms that can handle both adversarial losses and adversarial transitions, with regret increasing smoothly in the degree of maliciousness of the adversary. More concretely, we first propose an algorithm that enjoys O~(T+CP)\widetilde{{O}}(\sqrt{T} + C^{\textsf{P}}) regret where CPC^{\textsf{P}} measures how adversarial the transition functions are and can be at most O(T){O}(T). While this algorithm itself requires knowledge of CPC^{\textsf{P}}, we further develop a black-box reduction approach that removes this requirement. Moreover, we also show that further refinements of the algorithm not only maintains the same regret bound, but also simultaneously adapts to easier environments (where losses are generated in a certain stochastically constrained manner as in Jin et al. [2021]) and achieves O~(U+UCL+CP)\widetilde{{O}}(U + \sqrt{UC^{\textsf{L}}} + C^{\textsf{P}}) regret, where UU is some standard gap-dependent coefficient and CLC^{\textsf{L}} is the amount of corruption on losses.Comment: 66 page
    • …
    corecore