We study the problem of designing adaptive multi-armed bandit algorithms that
perform optimally in both the stochastic setting and the adversarial setting
simultaneously (often known as a best-of-both-world guarantee). A line of
recent works shows that when configured and analyzed properly, the
Follow-the-Regularized-Leader (FTRL) algorithm, originally designed for the
adversarial setting, can in fact optimally adapt to the stochastic setting as
well. Such results, however, critically rely on an assumption that there exists
one unique optimal arm. Recently, Ito (2021) took the first step to remove such
an undesirable uniqueness assumption for one particular FTRL algorithm with the
21​-Tsallis entropy regularizer. In this work, we significantly
improve and generalize this result, showing that uniqueness is unnecessary for
FTRL with a broad family of regularizers and a new learning rate schedule. For
some regularizers, our regret bounds also improve upon prior results even when
uniqueness holds. We further provide an application of our results to the
decoupled exploration and exploitation problem, demonstrating that our
techniques are broadly applicable.Comment: Update the camera-ready version for NeurIPS 202