56 research outputs found

    Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Get PDF
    The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005). The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008)

    Predicting Disease-Related Genes Using Integrated Biomedical Networks

    Get PDF
    Background: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery. Results: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery. Conclusions: The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets

    Relationship Between Alzheimer’s Disease and the Immune System: A Meta-Analysis of Differentially Expressed Genes

    Get PDF
    Alzheimer’s disease (AD), a neurodegenerative diseases (neuro-diseases) which is prevalent in the elderly and seriously affects the lives of individuals. Many studies have discussed the relationship between immune system and AD pathogenesis. Here, the meta-analysis of differentially expressed (DE) genes based on microarray data was conducted to study the association between AD and immune system. 9519 target genes of hippocampus in 146 subjects (73 AD cases and 73 controls) from 4 microarray data sets were compiled and DE genes with p < 1.00E - 04 were selected to conduct the pathway-analysis. The results indicated that the DE genes were significantly enriched in the neuro-diseases as well as the immune system pathways

    A Method Based on Differential Entropy-Like Function for Detecting Differentially Expressed Genes Across Multiple Conditions in RNA-Seq Studies

    No full text
    The advancement of high-throughput RNA sequencing has uncovered the profound truth in biology, ranging from the study of differential expressed genes to the identification of different genomic phenotype across multiple conditions. However, lack of biological replicates and low expressed data are still obstacles to measuring differentially expressed genes effectively. We present an algorithm based on differential entropy-like function (DEF) to test for the differential expression across time-course data or multi-sample data with few biological replicates. Compared with limma, edgeR, DESeq2, and baySeq, DEF maintains equivalent or better performance on the real data of two conditions. Moreover, DEF is well suited for predicting the genes that show the greatest differences across multiple conditions such as time-course data and identifies various biologically relevant genes

    Genetic variant rs763361 regulates multiple sclerosis CD226

    No full text

    A reliability-based track fusion algorithm.

    No full text
    The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments

    Cis

    No full text
    corecore