9 research outputs found

    Cellular immunotherapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer in extensive stage

    Get PDF
    AbstractBackgroundSmall cell lung cancer (SCLC) is the most devastating type of human lung cancer. Patients usually present with disseminated disease to many organs (extensive stage). This study was to investigate the efficacy and safety of cellular immunotherapy (CIT) with autologous natural killer (NK), γδT, and cytokine-induced killer (CIK) cells as maintenance therapy for extensive-stage SCLC (ES-SCLC) patients.MethodsA pilot prospective cohort study was conducted with ES-SCLC patients who had responded to initial chemotherapy. Patients received either CIT as maintenance therapy (CIT group), or no treatment (control group). Progression-free survival (PFS), overall survival (OS), and adverse effects were compared.ResultsForty-nine patients were recruited in this study, with 19 patients in the CIT group and 30 patients in the control group. The patient characteristics of the 2 groups were comparable except for age, as patients in the CIT group were older than those in the control group (P < 0.05). PFS in the CIT group was superior to the control group (5 vs. 3.1 months, P = 0.020; HR, 0.489, 95% CI, 0.264–0.909, P = 0.024). OS of the CIT group was also longer than that of the control group (13.3 vs. 8.2 months, P = 0.044; HR, 0.528, 95% CI, 0.280–0.996, P = 0.048, respectively). No significant adverse reactions occurred in patients undergoing CIT.ConclusionsCIT maintenance therapy in ES-SCLC prolonged survival with only minimal side effects. Integrating CIT into the current treatment may be a novel strategy for ES-SCLC patients, although further multi-center randomized trials are needed

    Dual Effects of Cellular Immunotherapy in Inhibition of Virus Replication and Prolongation of Survival in HCV-Positive Hepatocellular Carcinoma Patients

    No full text
    Immune cells play an important role in the development and progression of hepatitis C virus (HCV) and hepatocellular carcinoma (HCC). We conducted a retrospective study to evaluate the influence of adoptive cellular immunotherapy (CIT) on viral load and progression-free survival (PFS) for HCC patients infected with HCV. Patients (n=104) were divided into a control group (conventional therapy, n=73) and study group (combination of CIT and conventional therapy, n=31). Autologous mononuclear cells were induced into natural killer, γδT, and cytokine-induced killer cells and infused intravenously to study group patients. More patients had shown viral load decrease or were stable in study group (100% versus 75%) (p=0.014). The median PFS of the study group and control group was 16 and 10 months, respectively (p=0.0041), and only CIT was an independent prognostic factor for PFS (hazard ratio, 0.422; p=0.005). Three patients developed transient moderate fever after infusion, and there were no significant differences in alanine aminotransferase and aspartate aminotransferase levels before and after treatment in both groups. Our results show that CIT contributes to improvement of prognosis and inhibition of viral replication in HCV-related HCC patients, without impairment of liver function

    &beta;-Delayed &gamma; Emissions of 26P and Its Mirror Asymmetry

    No full text
    The study of the origin of asymmetries in mirror &beta; decay is extremely important to understand the fundamental nuclear force and the nuclear structure. The experiment was performed at the National Laboratory of Heavy Ion Research Facility in Lanzhou (HIRFL) to measure the &beta;-delayed &gamma; rays of 26P by silicon array and Clover-type high-purity Germanium (HPGe) detectors. Combining with results from the &beta; decay of 26P and its mirror nucleus 26Na, the mirror asymmetry parameter &delta; ( &equiv;ft+/ft&minus;&minus; 1) was determined to be 46(13)% for the transition feeding the first excited state in the daughter nucleus. Our independent results support the conclusion that the large mirror asymmetry is close to the proton halo structure in 26P

    <i>β</i>-Delayed <i>γ</i> Emissions of <sup>26</sup>P and Its Mirror Asymmetry

    No full text
    The study of the origin of asymmetries in mirror β decay is extremely important to understand the fundamental nuclear force and the nuclear structure. The experiment was performed at the National Laboratory of Heavy Ion Research Facility in Lanzhou (HIRFL) to measure the β-delayed γ rays of 26P by silicon array and Clover-type high-purity Germanium (HPGe) detectors. Combining with results from the β decay of 26P and its mirror nucleus 26Na, the mirror asymmetry parameter δ ( ≡ft+/ft−− 1) was determined to be 46(13)% for the transition feeding the first excited state in the daughter nucleus. Our independent results support the conclusion that the large mirror asymmetry is close to the proton halo structure in 26P

    Determination of the

    No full text
    The neutron capture cross section of 232Th^{232}Th has been measured with the time-of-flight technique in the energy range from 10 to 200 keV at the back-streaming white neutron beam-line (Back-n) of China Spallation Neutron Source (CSNS). The pulse height weighting technique (PHWT) was applied with four C6_{6}D6_{6} liquid scintillators to measure the prompt gamma-ray energy release following neutron capture. The measurement data, corrected with the PHWT, have been normalized to the saturated resonances at 21.8 eV. The background was determined by a lead sample measurement and detailed Monte Carlo simulations. The 232Th(n,γ)^{232}Th(n,\gamma ) average cross sections have been determined relative to the 197Au(n,γ)^{197}Au(n,\gamma ) reaction cross sections. The results are consistent with the evaluation values of CENDL-3.2 and JENDL-5. The total uncertainties, including the PHWT, normalization, background subtraction, corrections, and relative measurement, are in the range of 4.5–4.8%
    corecore