147 research outputs found

    The Birthplace of Low-Mass X-ray Binaries: Field Versus Globular Cluster Populations

    Full text link
    Recent Chandra studies of low-mass X-ray binaries (LMXBs) within early-type galaxies have found that LMXBs are commonly located within globular clusters of the galaxies. However, whether all LMXBs are formed within globular clusters has remained an open question. If all LMXBs formed within globular clusters, the summed X-ray luminosity of the LMXBs in a galaxy should be directly proportional to the number of globular clusters in the galaxy regardless of where the LMXBs currently reside. We have compared these two quantities over the same angular area for a sample of 12 elliptical and S0 galaxies observed with Chandra and found that the correlation between the two quantities is weaker than expected if all LMXBs formed within globular clusters. This indicates that a significant number of the LMXBs were formed in the field, and naturally accounts for the spread in field-to-cluster fractions of LMXBs from galaxy to galaxy. We also find that the "pollution" of globular cluster LMXBs into the field has been minimal within elliptical galaxies, but there is evidence that roughly half of the LMXBs originally in the globular clusters of S0 galaxies in our sample have escaped into the field. This is due to higher globular cluster disruption rates in S0s resulting from stronger gravitational shocks caused by the passage of globular clusters through the disks of S0 galaxies that are absent in elliptical galaxies.Comment: To appear in ApJ, 1 October 2005, v631 2 issue, 9 pages, 3 figures, typos and a few minor issues correcte

    Hard X-ray Emission from the M87 AGN Detected with NuSTAR

    Get PDF
    M87 hosts a 3-6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission \gtrsim 10keV, which would be expected to primarily come from the jet or the accretion flow, had never been detected from its unresolved X-ray core. We report NuSTAR detection up to 40 keV from the the central regions of M87. Together with simultaneous Chandra observations, we have constrained the dominant hard X-ray emission to be from its unresolved X-ray core, presumably in its quiescent state. The core spectrum is well fitted by a power law with photon index Gamma=2.11 (+0.15 -0.11). The measured flux density at 40 keV is consistent with a jet origin, although emission from the advection-dominated accretion flow cannot be completely ruled out. The detected hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain emission above a GeV.Comment: 5 pages, 4 figures, updated to better match the published version in the Astrophysical Journal Letters. A minor typo in the published version (angular scale should be 1 arcsec = 78 pc instead, no result of the paper is affected) is fixed her

    The Search for Million Degree Gas Through The NVII Hyperfine Line

    Full text link
    Gas in the million degree range occurs in a variety of astronomical environments, and it may be the main component of the elusive missing baryons at low redshift. The NVII ion is found in this material and it has a hyperfine spin-flip transition with a rest frequency of 53.042 GHz, which can be observed for z > 0.1, when it is shifted into a suitably transparent radio band. We used the 42-48 GHz spectrometer on the Green Bank Telescope to search for both emission and absorption from this NVII transmission. For absorption studies, 3C273, 3C 279, 3C 345, and 4C+39.25 were observed but no feature were seen above the 5 sigma level. For emission line studies, we observed Abell 1835, Abell 2390 and the star-forming galaxy PKS 1345+12, but no features were seen exceeding 5 sigma. We examine whether the strongest emission feature, in Abell 2390 (3.7 sigma), and the strongest absorption feature, toward 4C+39.25 (3.8 sigma), might be expected from theoretical models. The emission feature would require ~1E10 Msolar of 1E6 K gas, which is inconsistent with X-ray limits for the O VII Kalpha line, so it is unlikely to be real. The NVII absorption feature requires a NVII column of 6E16 cm^-2, higher than model predictions by at least an order of magnitude, which makes it inconsistent with model expectations. The individual observations were less than 1 hr in length, so for lengthy observations, we show that NVII absorption line observations can begin to be useful in in the search for hot intergalactic gas.Comment: 27 total pages; 16 figures; Accepted for publication in The Astrophysical Journa

    ROSAT X-ray Colors and Emission Mechanisms in Early-Type Galaxies

    Full text link
    The X-ray colors and X-ray-to-optical luminosity ratios (L_X/L_B) of 61 early- type galaxies observed with the ROSAT PSPC are determined. The colors indicate that the X-ray spectral properties of galaxies vary as a function of L_X/L_B. The brightest X-ray galaxies have colors consistent with thermal emission from hot gas with roughly the same metallicity of 50% solar. The spatial variation of the colors indicates that the gas temperature in these galaxies increases radially. Galaxies with medium L_X/L_B also have spectral properties consistent with emission from hot gas. If a simple one-component thermal model is assumed to describe the 0.1-2.0 keV X-ray emission in these galaxies, then one possible explanation for the progressive decrease in L_X/L_B among galaxies of this class could be the progressive decrease in metal abundance of the X-ray emitting contained by the galaxies. Galaxies with the lowest L_X/L_B values appear to be lacking a hot interstellar component. Their X-ray colors are consistent with those derived from the bulges of the spiral galaxies M31 and NGC1291. In M31 the X-ray emission is resolved into discrete sources, and is apparently due primarily to low mass X-ray binaries (LMXBs). We therefore suggest that the bulk of the X-ray emission in the faintest ellipticals is also due to LMXBs. Previously, the X-ray spectra of X-ray faint galaxies had been found to be described by a hard component which was attributed to LMXB emission, and a very soft component of unknown origin. We show that the very soft component also likely results from LMXBs, as a very soft component is seen in the X-ray spectra of the nearby LMXB Her X-1 and LMXBs in the bulge of M31. (Abridged)Comment: 49 pages, 17 embedded Postscript figures, uses aaspp4.sty, Astrophysical Journal, volume 499, in pres

    Chandra Observations of Low Mass X-ray Binaries and Diffuse Gas in the Early-Type Galaxies NGC 4365 and NGC 4382 (M85)

    Full text link
    (Abridged) We used the Chandra X-ray Observatory ACIS S3 to image the X-ray faint elliptical galaxy NGC 4365 and lenticular galaxy NGC 4382. The observations resolve much of the X-ray emission into 99 and 58 sources, respectively, most of which are low-mass X-ray binaries (LMXBs) associated with each of the galaxies. We identify 18 out of the 37 X-ray sources in a central field in NGC 4365 with globular clusters. The luminosity functions of the resolved sources for both galaxies are best fit with cutoff power-laws whose cutoff luminosity is 0.93.1×1039\approx 0.9 - 3.1 \times 10^{39} ergs s1^{-1}. These luminosities are much larger than those previously measured for similar galaxies; we do not find evidence for a break in the luminosity function at the Eddington luminosity of a 1.4 MM_\odot neutron star. The spatial distributions of the resolved sources for both galaxies are broader than the distribution of optical stars. In both galaxies, a hard power-law model fits the summed spectrum of all of the sources. The unresolved emission is best fit by the sum of a soft mekal model representing emission from diffuse gas, and a hard power-law, presumed to be from unresolved LMXBs. A standard beta model fits the radial distribution of the diffuse gas in both galaxies. In the elliptical NGC 4365, the best-fit core radius is very small, while the S0 galaxy NGC 4382 has a larger core radius. This may indicate that the gas in NGC 4382 is rotating significantly.Comment: Astrophysical Journal, accepted: 38 pages with 20 embedded reduced resolution Postscript figure
    corecore