94 research outputs found

    SAM-PD: How Far Can SAM Take Us in Tracking and Segmenting Anything in Videos by Prompt Denoising

    Full text link
    Recently, promptable segmentation models, such as the Segment Anything Model (SAM), have demonstrated robust zero-shot generalization capabilities on static images. These promptable models exhibit denoising abilities for imprecise prompt inputs, such as imprecise bounding boxes. In this paper, we explore the potential of applying SAM to track and segment objects in videos where we recognize the tracking task as a prompt denoising task. Specifically, we iteratively propagate the bounding box of each object's mask in the preceding frame as the prompt for the next frame. Furthermore, to enhance SAM's denoising capability against position and size variations, we propose a multi-prompt strategy where we provide multiple jittered and scaled box prompts for each object and preserve the mask prediction with the highest semantic similarity to the template mask. We also introduce a point-based refinement stage to handle occlusions and reduce cumulative errors. Without involving tracking modules, our approach demonstrates comparable performance in video object/instance segmentation tasks on three datasets: DAVIS2017, YouTubeVOS2018, and UVO, serving as a concise baseline and endowing SAM-based downstream applications with tracking capabilities

    InterTracker: Discovering and Tracking General Objects Interacting with Hands in the Wild

    Full text link
    Understanding human interaction with objects is an important research topic for embodied Artificial Intelligence and identifying the objects that humans are interacting with is a primary problem for interaction understanding. Existing methods rely on frame-based detectors to locate interacting objects. However, this approach is subjected to heavy occlusions, background clutter, and distracting objects. To address the limitations, in this paper, we propose to leverage spatio-temporal information of hand-object interaction to track interactive objects under these challenging cases. Without prior knowledge of the general objects to be tracked like object tracking problems, we first utilize the spatial relation between hands and objects to adaptively discover the interacting objects from the scene. Second, the consistency and continuity of the appearance of objects between successive frames are exploited to track the objects. With this tracking formulation, our method also benefits from training on large-scale general object-tracking datasets. We further curate a video-level hand-object interaction dataset for testing and evaluation from 100DOH. The quantitative results demonstrate that our proposed method outperforms the state-of-the-art methods. Specifically, in scenes with continuous interaction with different objects, we achieve an impressive improvement of about 10% as evaluated using the Average Precision (AP) metric. Our qualitative findings also illustrate that our method can produce more continuous trajectories for interacting objects.Comment: IROS 202

    mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for Millimeter Wave Radar

    Full text link
    Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc. Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals. However, it is unclear how accurately we can reconstruct the 3D body from the mmWave signals across scenes and how it performs compared with cameras, which are important aspects needed to be considered when either using mmWave radars alone or combining them with cameras. To answer these questions, an automatic 3D body annotation system is first designed and built up with multiple sensors to collect a large-scale dataset. The dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes. With this dataset, we train state-of-the-art methods with inputs from different sensors and test them in various scenarios. The results demonstrate that 1) despite the noise and sparsity of the generated point clouds, the mmWave radar can achieve better reconstruction accuracy than the RGB camera but worse than the depth camera; 2) the reconstruction from the mmWave radar is affected by adverse weather conditions moderately while the RGB(D) camera is severely affected. Further, analysis of the dataset and the results shadow insights on improving the reconstruction from the mmWave radar and the combination of signals from different sensors.Comment: ACM Multimedia 2022, Project Page: https://chen3110.github.io/mmbody/index.htm

    Context-Aware Integration of Language and Visual References for Natural Language Tracking

    Full text link
    Tracking by natural language specification (TNL) aims to consistently localize a target in a video sequence given a linguistic description in the initial frame. Existing methodologies perform language-based and template-based matching for target reasoning separately and merge the matching results from two sources, which suffer from tracking drift when language and visual templates miss-align with the dynamic target state and ambiguity in the later merging stage. To tackle the issues, we propose a joint multi-modal tracking framework with 1) a prompt modulation module to leverage the complementarity between temporal visual templates and language expressions, enabling precise and context-aware appearance and linguistic cues, and 2) a unified target decoding module to integrate the multi-modal reference cues and executes the integrated queries on the search image to predict the target location in an end-to-end manner directly. This design ensures spatio-temporal consistency by leveraging historical visual information and introduces an integrated solution, generating predictions in a single step. Extensive experiments conducted on TNL2K, OTB-Lang, LaSOT, and RefCOCOg validate the efficacy of our proposed approach. The results demonstrate competitive performance against state-of-the-art methods for both tracking and grounding.Comment: Accepted by CVPR202

    NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction

    Full text link
    Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems. However, applying them to autonomous 3D reconstruction, where robots are required to explore a scene and plan a view path for the reconstruction, has not been studied. In this paper, we explore for the first time the possibility of using implicit neural representations for autonomous 3D scene reconstruction by addressing two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one. For the first challenge, a proxy of Peak Signal-to-Noise Ratio (PSNR) is proposed to quantify a viewpoint quality. The proxy is acquired by treating the color of a spatial point in a scene as a random variable under a Gaussian distribution rather than a deterministic one; the variance of the distribution quantifies the uncertainty of the reconstruction and composes the proxy. For the second challenge, the proxy is optimized jointly with the parameters of an implicit neural network for the scene. With the proposed view quality criterion, we can then apply the new representations to autonomous 3D reconstruction. Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.Comment: 8 pages, 6 figures, 2 table

    Multiple target tracking under occlusions using modified Joint Probabilistic Data Association

    Get PDF
    International audienceThe size of target will induce a degradation of tracking performance, which has been neglected for simplicity in most previous studies. In multiple target tracking, occlusions will be caused by target size effect, one target can become a moving obstacle blocking the direct channel between the anchor and another target. In this paper, the data association problem in multiple target tracking is investigated. To reduce the computational complexity of traditional Joint Probabilistic Data Association (JPDA) algorithm, a modified JPDA algorithm is proposed to execute data association in multiple target tracking by utilizing the information of occlusion conditions, which is identified by a three-step algorithm. Simulation results show that the proposed algorithm is with good tracking performance and low computational complexity

    ImmFusion: Robust mmWave-RGB Fusion for 3D Human Body Reconstruction in All Weather Conditions

    Full text link
    3D human reconstruction from RGB images achieves decent results in good weather conditions but degrades dramatically in rough weather. Complementary, mmWave radars have been employed to reconstruct 3D human joints and meshes in rough weather. However, combining RGB and mmWave signals for robust all-weather 3D human reconstruction is still an open challenge, given the sparse nature of mmWave and the vulnerability of RGB images. In this paper, we present ImmFusion, the first mmWave-RGB fusion solution to reconstruct 3D human bodies in all weather conditions robustly. Specifically, our ImmFusion consists of image and point backbones for token feature extraction and a Transformer module for token fusion. The image and point backbones refine global and local features from original data, and the Fusion Transformer Module aims for effective information fusion of two modalities by dynamically selecting informative tokens. Extensive experiments on a large-scale dataset, mmBody, captured in various environments demonstrate that ImmFusion can efficiently utilize the information of two modalities to achieve a robust 3D human body reconstruction in all weather conditions. In addition, our method's accuracy is significantly superior to that of state-of-the-art Transformer-based LiDAR-camera fusion methods

    Realtime characteristic of FF like centralized control fieldbus and its state-of-art

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThe temporal property of MAC protocol of fieldbus is critical to meet real-time constraints of field devices in factory floor. Among various types of MAC protocols, the one using centralized strategy is characterized by providing feasible schedule to meet different temporal constraints of field devices online, but also providing schedulability analysis offline a priori. WorldFIP and FF, two popular international standards of fieldbus, both adapt centralized strategy, which is mainly implemented by schedule table (ST). This paper mainly discusses how to construct ST, including size of ST, schedule algorithm and schedulability analysis, to meet requirement of field devices on response time, jitter, synchronization, and its State-of-the Art
    • …
    corecore