423 research outputs found

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR

    De novo assembly of potential linear artificial chromosome constructs capped with expansive telomeric repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artificial chromosomes (ACs) are a promising next-generation vector for genetic engineering. The most common methods for developing AC constructs are to clone and combine centromeric DNA and telomeric DNA fragments into a single large DNA construct. The AC constructs developed from such methods will contain very short telomeric DNA fragments because telomeric repeats can not be stably maintained in <it>Escherichia coli</it>.</p> <p>Results</p> <p>We report a novel approach to assemble AC constructs that are capped with long telomeric DNA. We designed a plasmid vector that can be combined with a bacterial artificial chromosome (BAC) clone containing centromeric DNA sequences from a target plant species. The recombined clone can be used as the centromeric DNA backbone of the AC constructs. We also developed two plasmid vectors containing short arrays of plant telomeric DNA. These vectors can be used to generate expanded arrays of telomeric DNA up to several kilobases. The centromeric DNA backbone can be ligated with the telomeric DNA fragments to generate AC constructs consisting of a large centromeric DNA fragment capped with expansive telomeric DNA at both ends.</p> <p>Conclusions</p> <p>We successfully developed a procedure that circumvents the problem of cloning and maintaining long arrays of telomeric DNA sequences that are not stable in <it>E. coli</it>. Our procedure allows development of AC constructs in different eukaryotic species that are capped with long and designed sizes of telomeric DNA fragments.</p

    Embedded Based Miniaturized Universal Electrochemical Sensing Platform

    Get PDF
    We created an embedded sensing platform based on STM32 embedded system, with integrated carbon-electrode ionic sensor by using a self-made plug. Given ration of concentration-unknown nitrate liquid samples, this platform is able to measure the nitrate concentration in neutral environment. Response signals which were transmitted by the sensor can be displayed via a serial port to the computer screen or via Bluetooth to the smartphone. Processed by a fitting function, signals are transformed into related concentration. Through repeating the experiment many times, the accuracy and repeatability turned out to be excellent. The results can be automatically stored on smartphone via Bluetooth. We created this embedded sensing platform for field water quality measurement. This platform also can be applied for other micro sensors’ signal acquisition and data processing

    Genetically Determined Rheumatoid Arthritis May Not Affect Heart Failure: Insights from Mendelian Randomization Study

    Get PDF
    Background: Evidence from observational epidemiological studies indicated that rheumatoid arthritis (RA) increased the risk of heart failure (HF). However, there is a possibility that the correlation is not explained as a causative role for RA in the pathogenesis of HF. A two-sample Mendelian randomization (MR) framework was designed to explore the potential etiological role of RA in HF to identify the target to improve the burden of HF disease. Methods: To assess the causal association between RA and HF, we analyzed summary statistics from genome-wide association studies (GWASs) for individuals of European descent. Genetic instruments for RA were identified at a genome-wide significance threshold (p 0.05). Conclusion: Our findings did not support the causal role of RA in the etiology of HF. As such, therapeutics targeted at the control of RA may have a lower likelihood of effectively controlling the occurrence of HF

    Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with UV-Vis: A Case Study for Cubic Boron Arsenide

    Full text link
    The Tauc plot method is widely used to determine the bandgap of semiconductors via UV-visible optical spectroscopy due to its simplicity and perceived accuracy. However, the actual Tauc plot often exhibits significant baseline absorption below the expected bandgap, leading to discrepancies in the calculated bandgap depending on whether the linear fit is extrapolated to zero or non-zero baseline. In this study, we show that both extrapolation methods can produce significant errors by simulating Tauc plots with varying levels of baseline absorption. To address this issue, we propose a new method that involves idealizing the absorption spectrum by removing its baseline before constructing the Tauc plot. Experimental verification of this method using a gallium phosphide (GaP) wafer with intentionally introduced baseline absorptions shows promising results. Furthermore, we apply this new method to cubic boron arsenide (c-BAs) and resolve discrepancies in c-BAs bandgap values reported by different groups, obtaining a converging bandgap of 1.835 eV based on both previous and new transmission spectra. The method is applicable to both indirect and direct bandgap semiconductors, regardless of whether the absorption spectrum is measured via transmission or diffuse reflectance, will become essential to obtain accurate values of their bandgaps

    End-of-treatment anti-HBs levels and HBeAg status identify durability of HBsAg loss after PEG-IFN discontinuation

    Get PDF
    BackgroundHepatitis B surface antigen (HBsAg) loss, namely, the functional cure, can be achieved through the pegylated interferon (PEG-IFN)-based therapy. However, it is an unignorable fact that a small proportion of patients who achieved functional cure develop HBsAg reversion (HRV) and the related factors are not well described.MethodsA total of 112 patients who achieved PEG-IFN-induced HBsAg loss were recruited. HBV biomarkers and biochemical parameters were examined dynamically. HBV RNA levels were assessed in the cross-sectional analysis. The primary endpoint was HRV, defined as the reappearance of HBsAg after PEG-IFN discontinuation.ResultsHRV occurred in 17 patients during the follow-up period. Univariable analysis indicated that hepatitis B e antigen (HBeAg) status, different levels of hepatitis B surface antibody (anti-HBs), and hepatitis B core antibody (anti-HBc) at the end of PEG-IFN treatment (EOT) were significantly associated with the incidence of HRV through using the log-rank test. Additionally, time-dependent receiver operating characteristic (ROC) analysis showed that the anti-HBs was superior to anti-HBc in predictive power for the incidence of HRV during the follow-up period. Multivariable Cox proportional hazard analysis found that anti-HBs ≥1.3 log10IU/L (hazard ratio (HR), 0.148; 95% confidence interval (CI), 0.044-0.502) and HBeAg negativity (HR, 0.183; 95% CI, 0.052-0.639) at EOT were independently associated with lower incidence of HRV. Cross-sectional analysis indicated that the HBV RNA levels were significantly correlated with the HBsAg levels in patients with HRV (r=0.86, p=0.003).ConclusionsEOT HBeAg negativity and anti-HBs ≥1.3 log10IU/L identify the low risk of HRV after PEG-IFN discontinuation

    Photoacoustic Identification of Laser-induced Microbubbles as Light Scattering Centers for Optical Limiting in Liquid Suspension of Graphene Nanosheets

    Full text link
    Liquid suspensions of carbon nanotubes, graphene and transition metal dichalcogenides have exhibited excellent performance in optical limiting. However, the underlying mechanism has remained elusive and is generally ascribed to their superior nonlinear optical properties such as nonlinear absorption or nonlinear scattering. Using graphene as an example, we show that photo-thermal microbubbles are responsible for the optical limiting as strong light scattering centers: graphene sheets absorb incident light and become heated up above the boiling point of water, resulting in vapor and microbubble generation. This conclusion is based on direct observation of bubbles above the laser beam as well as a strong correlation between laser-induced ultrasound and optical limiting. In-situ Raman scattering of graphene further confirms that the temperature of graphene under laser pulses rises above the boiling point of water but still remains too low to vaporize graphene and create graphene plasma bubbles. Photo-thermal bubble scattering is not a nonlinear optical process and requires very low laser intensity. This understanding helps us to design more efficient optical limiting materials and understand the intrinsic nonlinear optical properties of nanomaterials
    corecore