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ABSTRACT
Background: Evidence from observational epidemiological studies indicated that 
rheumatoid arthritis (RA) increased the risk of heart failure (HF). However, there 
is a possibility that the correlation is not explained as a causative role for RA in the 
pathogenesis of HF. A two-sample Mendelian randomization (MR) framework was 
designed to explore the potential etiological role of RA in HF to identify the target to 
improve the burden of HF disease.

Methods: To assess the causal association between RA and HF, we analyzed summary 
statistics from genome-wide association studies (GWASs) for individuals of European 
descent. Genetic instruments for RA were identified at a genome-wide significance 
threshold (p < 5 × 10–8). Corresponding data were obtained from a GWAS meta-analysis 
(95,524 cases and 1,270,968 controls) to identify genetic variants underlying HF. MR 
estimates were pooled using the inverse variance weighted method. Complementary 
analyses were conducted to assess the robustness of the results.

Results: There was no evidence of a causal association between genetically predicted 
RA and HF [odds ratio (OR), 1.00; 95% confidence interval (CI), 0.99–1.02; P = 0.60]. 
Various sensitivity analyses suggested no pleiotropy detected (all p > 0.05).

Conclusion: Our findings did not support the causal role of RA in the etiology of HF. 
As such, therapeutics targeted at the control of RA may have a lower likelihood of 
effectively controlling the occurrence of HF.
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INTRODUCTION
Heart failure (HF) is a common cardiovascular disease characterized by the impairment of 
ventricular filling or blood ejection [1]. The pathophysiology of HF is multifarious and complex, 
with a sophisticated interaction between genetic and environmental factors [2]. There 
is convincing evidence that inflammation plays a significant role in the pathogenesis of HF 
[3], and the comorbidity paradigm between HF and autoimmune diseases has been widely 
reported [4].

Rheumatoid arthritis (RA) is a systemic autoimmune polyarthritis with a core feature of 
abnormal activation of immunity [5, 6]. While the joint disease per se is not lethal, about half 
to a third of premature deaths in patients with RA are due to an increased risk of cardiovascular 
events [7–10]. As the second leading cause of death in RA patients, HF is underappreciated [3]. 
An emerging body of literature indicates that RA patients are almost twice as likely to develop 
HF as individuals without RA [4, 9], which could not be explained by an increased frequency or 
effect of cardiovascular risk factors and coronary artery disease [11, 12]. Additionally, the time 
of HF onset is shorter in RA groups than in non-RA groups [9]. Therefore, RA should be considered 
a possible risk factor for HF. Traditionally, RA was presumed to be associated with an increased 
risk of HF due to inflammatory activity [3]. This hypothesis was further supported by some 
studies which suggested a link between comorbidities associated with systemic inflammation 
and the development of HF [13–15]. Nevertheless, recent randomized controlled trials seem to 
be contradictory and elusive in favor of the benefit of RA therapy for HF [3, 9, 16–18]. Thus, it is 
unclear whether RA and HF are associated. 

With the limited suggestive evidence from observational studies, Mendelian randomization 
(MR) analysis offers an opportunity to clarify the potential causal association between RA and 
HF. MR is an efficient and reliable epidemiological research method [19, 20] that uses genetic 
variants as a proxy for risk factors, mimicking the randomization assignment that underpins 
causal inference in randomized controlled trials [21, 22]. In particular, MR capitalizes on the 
randomly allocated offspring allele inheritance that occurs naturally during the formation of 
zygote [23], which could minimize the inherent problems of confounding and eliminate reverse 
causality in observational studies [24, 25].

Unraveling the causal links between RA and HF may provide new avenues for the management 
of HF. Here, we conducted a two-sample MR aimed to test the hypothesis that RA is causally 
related to the risk of HF from a genetic perspective.

MATERIALS AND METHODS
STUDY DESIGN 

MR techniques use genetic variants as instrumental variables (IVs) to mimic the biological 
effects that can enhance causal inference [26, 27]. Three key assumptions must hold for the 
MR study to be valid [20, 28]: (i) each genetic variant is highly associated with risk factor (the 
relevance assumption); (ii) no significant association is observed between the genetic variant 
and the confounders of the risk factor-outcome relationship (the independence assumption); 
(iii) each genetic variant does not have any association with the outcome conditional on the risk 
factor and the confounders of the risk factor-outcome relationship (the exclusion restriction). 
If all these assumptions are met, then the only causal pathway from the genetic variant to 
the outcome is the risk factor, and there are no other causal pathways, either directly to the 
outcome or via confounders (supplementary material Figure S1). We estimated the genetically 
predicted effects of RA on HF using a two-sample MR framework [29].

DATA SOURCE 

The datasets used in our MR analyses were derived from publicly available genome-wide 
association studies (GWASs). Only participants of European ancestry were included in order 
to reduce population stratification bias and improve the stability of the analyses. Detailed 
information on all summary statistics used in the MR study is provided in supplementary 
materials Table S1. There was no sample overlap between GWAS for RA and HF.
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We were exposed to genetically determined RA, as IVs and HF were the primary outcome. 
RA-associated variants were extracted from the Okada et al. [30]. All cases were defined 
using electronic health records (ICD-9 714.0, ICD-10: M05, or M06). Several aspects of the 
study design, such as the collection of samples, quality control procedures, and imputation 
methods, have been described in the original article. Levin et al. provided a summary of the 
genetic variants’ association with HF following the identification of the genetic variants [31]. 
GWAS summary statistics for HF were obtained from non-overlapping analyses of six separate 
cohorts/consortia. HF was defined using cohort-specific definitions (pheCodes80 or ICD-9/10 
codes documented within the electronic health record for all studies except HERMES, which 
additionally included expert adjudication among some cohorts). 

In this study, only summaries of published studies were utilized, and individual data were 
not involved. All studies contributing data to these analyses were approved by relevant ethics 
committees, and all participants provided written informed consent.

IVS SELECTION AND QUALITY CONTROL

We retrieved summary estimations of genetic variants to be associated with RA in the Okada 
et al. study and identified reached genome-wide significance (p < 5 × 10–8). For the purpose 
of ensuring genetic independence among variants, the threshold of linkage disequilibrium 
(LD) was set to r2 < 0.001 and located at 10,000 kb for further pruning [24]. We screened the 
secondary phenotypes of each selected instrument in PhenoScanner V2, a database of human 
genotype-phenotype associations [32, 33]. Harmonization was conducted to eliminate strand 
mismatches and ensure that the SNP effect sizes on both RA and HF correspond to the same 
allele. 

STATISTICAL ANALYSES

A two-sample MR approach was performed after harmonizing summary data based on 
a previously described method [34]. We used a set of complementary methods for the 
robustness of the results. The inverse variance weighted (IVW) method of the random effects 
model assumes that either all IVs are valid, or any horizontal pleiotropy is balanced [35]. The 
weighted median method can generate an unbiased estimate if at least 50% of the weight 
comes from valid IVs [36], and the MR-Egger regression method is primarily used to account for 
potential horizontal pleiotropy by its intercept [37]. In addition, the Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method was employed to identify potential 
outliers and correct, if necessary, for possible horizontal pleiotropic outliers in the analysis [38]. 
We used a pre-defined approach for selecting the best statistical estimate among these four 
methods (Supplement material Figure S2) and considered the association as casual when 
at least three methods provided consistent results. A leave-one-out analysis was conducted 
by removing every single variant from the analysis without exception. The fluctuation of the 
estimates in response to the exclusion of each variant reflects the potential of an outlier variant 
in the causal estimate. Additionally, Cochran’s Q statistics were used to examine the global 
heterogeneity across IV-specific MR estimates [39]. These sensitivity analyses were useful for 
determining whether a causal conclusion from such an analysis was plausible or not. 

All the statistical analyses were carried out in the R program (version 4.2.1), using the meta 
package (version 6.0–0), the TwoSampleMR package (version 0.5.6), the MRPRESSO package 
(version 1.0) and the MendelianRandomization package (version 0.6.0). Statistical significance 
association is defined as a p-value < 0.05.

RESULTS
We extracted 46 independent SNPs that reached genome-wide significance from RA 
(Supplementary material Table S2). Most SNPs were available in the GWAS of HF except for 
two (rs3799963, rs1042169). In the PhenoScanner and GWAS catalog, we identified four 
selected SNPs that were associated with confounders (Supplementary material Table S2). We 
removed one SNP for being palindromic. Characteristics of the genetic association of IVs with 
RA and HF outcomes are shown in Supplementary Table S3. According to the IVW analysis, 
genetically predicted RA was not associated with HF (Table 1; Supplementary material Table 
S3; Supplementary material Figure S4). The causal association between RA and HF was 
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confirmed using the weighted median, MR-PRESSO, MR-Egger regression, and leave-one-out 
methods (Table 1; Supplementary material Table S4, Supplementary material Figure S3) in the 
complementary analyses. Importantly, the MR-MRESSO method detected two outliers, but the 
results were similar after excluding the outliers (Table 1, Supplementary material Table S5). 

DISCUSSION
HF is a complex clinical syndrome with a multitude of potential risk factors and causes. The 
observation that RA may be associated with HF leads us to seek further evidence to confirm 
this hypothesis. In contrast to previous observational studies, our MR analysis of the European 
population did not provide evidence that genetically predicted RA contributes to an increased 
risk of HF.

RA and HF share similar inflammatory pathologies [3, 40]. According to Mantel et al., in 10,000 
Swedish patients with RA, the risk of HF increased rapidly after the onset of the disease and was 
associated with a high level of activity [9]. When stratified by HF subtype, C-reactive protein 
levels accounted for a greater proportion of HF with preserved ejection fraction than HF with 
reduced ejection fraction, indicating that inflammation may be a great contributor to the 
former in RA patients [41]. In patients with RA who do not have overt cardiovascular disease, 
local inflammation in the myocardium may be evident on cardiac magnetic resonance imaging 
[42]. Some studies have suggested that RA is causally related to hypertension, age-related 
heart attack, and coronary heart disease [43–44]. In our study, however, there was no direct 
causal relationship between RA and HF. HF can be caused by a variety of factors, including 
activation of the neurohumoral system, changes in blood pressure, or changes in ventricular 
hemodynamics [45]. In addition to inflammation, oxidative stress (as a marker of an imbalance 
between reactive oxygen species and antioxidants) is also typically increased and contributes to 
the development of HF and RA, representing another potentially shared pathway between the 
diseases [46]. Unsurprisingly, RA patients with increased levels of disease activity and systemic 
inflammation are at an increased risk of developing HF with preserved ejection fraction [47]. 
While the results of our study indicated no causal relationship between RA and HF incidence, 
RA may influence the progression of HF by increasing various inflammatory factors, which is 
beyond the scope of the current study. It is also important to note that some literature suggests 
that specific ‘treat-to-target’ RA therapies may not always be beneficial for the prevention of 
HF, and the mechanisms warrant further research [10, 40].

We have contributed to the rethinking of intervention targets for reversing RA and preventing 
HF as a result of our study. Compared to clinical trials, MR is a more cost-effective, quicker, 
and more ethical method of evaluating the long-term effects of interventions on RA. It is 
particularly important since efforts are still being made to develop interventions that can 
reverse complications related to RA.

To the best of our knowledge, this is the first MR study to explore the relationship between RA and 
HF. However, limitations should be considered when interpreting the results of this study, as RA 
and HF could be connected via complex biological pathways. The limited IVs may take current 
MR analyses underpowered. Since the databases used in the MR analysis were conducted on 
participants of European ancestry, the results may be biased and may not apply to other races. 
In the absence of individual data, it was not possible to conduct stratified analyses of disease 

OUTCOME SNP SELECTION SNPS,N METHOD OR (95% CI) P-VALUE

HF All 39 IVW 1.00(0.99–1.02) 0.68

MR Egger 1.01(0.99–1.03) 0.37

Weighted median 1.01(0.99–1.02) 0.38

Weighted mode 1.00(0.99–1.02) 0.30

Remove 37 IVW 1.00(0.99–1.01) 0.62

MR Egger 1.01(0.99–1.03) 0.31

Weighted median 1.01(0.99–1.02) 0.37

Weighted mode 1.01(0.99–1.02) 0.36

Table 1 Two-sample 
Mendelian randomization 
estimates between 
rheumatoid arthritis and heart 
failure.

Abbreviation: HF, heart failure; 
SNPs, single nucleotide 
polymorphisms; IVW, Inverse 
Variance Weighted; MR-Egger, 
Mendelian Randomization-
Egger; OR, odd ratios; CI, 
confidence interval.
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activity or HF subtypes and severity. Moreover, we excluded SNPs associated with systemic 
lupus erythematosus or hyperthyroidism, but there may still be other potential confounders 
that could violate the independence assumption, and it was not feasible to exclude them all. 

As a result, the MR study does not support a causal relationship between RA and HF in the 
current MR analyses. It was only from a genetic perspective that we investigated the causal 
relationship between certain forms of RA and HF. Therefore, our results should be treated with 
caution since the causal effect of genetic variants exposure on the outcome can be modified 
by compensatory processes during development. Further research with larger sample sizes is 
necessary to provide a more accurate estimate. 

CONCLUSION
Our MR analysis did not identify convincing evidence to support the causal relationship between 
RA with HF. A larger sample size is needed to confirm our MR result further.

ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Supplementary Materials. Supplementary Figures S1 to S4 and Tables S1 to S5. DOI: 
https://doi.org/10.5334/gh.1256.s1
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