2,013 research outputs found

    Hybrid rice technology development: Ensuring China's food security

    Get PDF
    millions fed, food security, Hybrid rice,

    A novel colorimetric biosensor based on non-aggregated Au@Ag core–shell nanoparticles for methamphetamine and cocaine detection

    Get PDF
    We report a novel colorimetric biosensor based on non-aggregation Au@Ag core-shell nanoparticles to detect methamphetamine and cocaine. The biosensor consisted of a reporter probe (RP) that is a specific single-stranded DNA (ssDNA) sequence coated on Au@Ag nanoparticles, a capture probe (CP) conjugated with magnetic beads, and an illicit drug-binding DNA aptamer (Apt). Au@Ag nanoparticles were synthesized by seed growth and characterized by scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM), and UV–vis spectra. Methamphetamine (METH) was used as an example to evaluate the feasibility of the biosensor and to optimize the detection conditions. We demonstrated that this sensing platform was able to detect as low as 0.1 nM (14.9 ng L−1) METH with a negligible interference from other common illicit drugs. Various concentrations of METH were spiked into urines, and the biosensor yielded recoveries more than 83.1%. In addition, the biosensor also showed a high sensitivity to detect cocaine. These results demonstrated that our colorimetric sensor holds promise to be implemented as a visual sensing platform to detect multiple illicit drugs in biological samples and environmental matrices

    Reliability of environmental sampling culture results using the negative binomial intraclass correlation coefficient.

    Get PDF
    The Intraclass Correlation Coefficient (ICC) is commonly used to estimate the similarity between quantitative measures obtained from different sources. Overdispersed data is traditionally transformed so that linear mixed model (LMM) based ICC can be estimated. A common transformation used is the natural logarithm. The reliability of environmental sampling of fecal slurry on freestall pens has been estimated for Mycobacterium avium subsp. paratuberculosis using the natural logarithm transformed culture results. Recently, the negative binomial ICC was defined based on a generalized linear mixed model for negative binomial distributed data. The current study reports on the negative binomial ICC estimate which includes fixed effects using culture results of environmental samples. Simulations using a wide variety of inputs and negative binomial distribution parameters (r; p) showed better performance of the new negative binomial ICC compared to the ICC based on LMM even when negative binomial data was logarithm, and square root transformed. A second comparison that targeted a wider range of ICC values showed that the mean of estimated ICC closely approximated the true ICC

    High-dimensional genome-wide association study and misspecified mixed model analysis

    Full text link
    We study behavior of the restricted maximum likelihood (REML) estimator under a misspecified linear mixed model (LMM) that has received much attention in recent gnome-wide association studies. The asymptotic analysis establishes consistency of the REML estimator of the variance of the errors in the LMM, and convergence in probability of the REML estimator of the variance of the random effects in the LMM to a certain limit, which is equal to the true variance of the random effects multiplied by the limiting proportion of the nonzero random effects present in the LMM. The aymptotic results also establish convergence rate (in probability) of the REML estimators as well as a result regarding convergence of the asymptotic conditional variance of the REML estimator. The asymptotic results are fully supported by the results of empirical studies, which include extensive simulation studies that compare the performance of the REML estimator (under the misspecified LMM) with other existing methods.Comment: 3 figure

    New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby

    Get PDF
    Historically, a material parameter B incorporating weighted mobility and lattice thermal conductivity has guided the exploration of novel thermoelectric materials. However, the conventional definition of B neglects the bipolar effect which can dramatically change the thermoelectric energy conversion efficiency at high temperatures. In this paper, a generalized material parameter B* is derived, which connects weighted mobility, lattice thermal conductivity, and the band gap. Based on the new parameter B*, we explain the successful tuning of the electron and phonon transport in Mg[subscript 2]S[subscript n1−x−y]Ge[subscript x]Sb[subscript y], with an improved ZT value from 0.6 in Mg[subscript 2]Sn[subscript 0.99]Sb[subscript 0.01] to 1.4 in Mg[subscript 2]Sn[subscript 0.73]Ge[subscript 0.25]Sb[subscript 0.02]. We uncover that the Ge alloying approach simultaneously improves all the key variables in the material parameter B*, with an ∼25% enhancement in the weighted mobility, ∼27% band gap widening, and ∼50% reduction in the lattice thermal conductivity. We show that a higher generalized parameter B* leads to a higher optimized ZT in Mg[subscript 2]Sn[subscript 0.73]Ge[subscript 0.25]Sb[subscript 0.02], and some common thermoelectric materials. The new parameter B* provides a better characterization of material's thermoelectric transport, particularly at high temperatures, and therefore can facilitate the search for good thermoelectric materials.United States. Department of Energy. Office of Science. Solid-State Solar Thermal Energy Conversion Center (Award DE-SC0001299/DE-FG02-09ER46577

    Heat shock transcription factor 1 preserves cardiac angiogenesis and adaptation during pressure overload

    Get PDF
    To examine how heat shock transcription factor 1 (HSF1) protects against maladaptive hypertrophy during pressure overload, we subjected HSF1 transgenic (TG), knockout (KO) and wild type (WT) mice to a constriction of transverse aorta (TAC), and found that cardiac hypertrophy, functions and angiogenesis were well preserved in TG mice but were decreased in KO mice compared to WT ones at 4 weeks, which was related to HIF-1 and p53 expression. Inhibition of angiogenesis suppressed cardiac adaptation in TG mice while overexpression of angiogenesis factors improved maladaptive hypertrophy in KO mice. In vitro formation of vasculatures by microvascular endothelial cells was higher in TG mice but lower in KO mice than in WT ones. A siRNA of p53 but not a HIF-1 gene significantly reversed maladaptive hypertrophy in KO mice whereas a siRNA of HIF-1 but not a p53 gene induced maladaptive hypertrophy in TG mice. Heart microRNA analysis showed that miR-378 and miR-379 were differently changed among the three mice after TAC, and miR-378 or siRNA of miR-379 could maintain cardiac adaptation in WT mice. These results indicate that HSF1 preserves cardiac adaptation during pressure overload through p53-HIF-1-associated angiogenesis, which is controlled by miR-378 and miR-379
    corecore