25 research outputs found

    Role of vascular channels as a novel mechanism for subchondral bone damage at cruciate ligament entheses in osteoarthritis and inflammatory arthritis.

    Get PDF
    Objectives: The purpose of this work was to test whether normal peri-entheseal vascular anatomy at anterior and posterior cruciate ligaments (ACL and PCL) was associated with distribution of peri-entheseal bone erosion/bone marrow lesions (BMLs) in inflammatory arthritis (IA) and osteoarthritis (OA). Methods: Normal microanatomy was defined histologically in mice and by 3 T MRI and histology in 21 cadaveric knees. MRI of 89 patients from the Osteoarthritis Initiative and 27 patients with IA was evaluated for BMLs at ACL and PCL entheses. Antigen-induced arthritis (AIA) in mice was evaluated to ascertain whether putative peri-entheseal vascular regions influenced osteitis and bone erosion. Results Vascular channels penetrating cortical bone were identified in knees of non-arthritic mice adjacent to the cruciate ligaments. On MRI of normal cadavers, vascular channels adjacent to the ACL (64% of cases) and PCL (71%) entheses were observed. Histology of 10 macroscopically normal cadaveric specimens confirmed the location of vascular channels and associated subclinical changes including subchondral bone damage (80% of cases) and micro-cyst formation (50%). In the AIA model, vascular channels clearly provided a site for inflammatory tissue entry and osteoclast activation. MRI showed BMLs in the same topographic locations in both patients with early OA (41% ACL, 59% PCL) and IA (44%, 33%). Conclusion: The findings show that normal ACL and PCL entheses have immediately adjacent vascular channels which are common sites of subtle bone marrow pathology in non-arthritic joints. These channels appear to be key determinants in bone damage in inflammatory and degenerative arthritis

    Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study

    Get PDF
    BACKGROUND: The ankle region is frequently involved in juvenile idiopathic arthritis (JIA) but difficult to examine clinically due to its anatomical complexity. The aim of the study was to evaluate the role of ultrasonography (US) of the ankle and midfoot (ankle region) in JIA. Doppler-US detected synovial hypertrophy, effusion and hyperemia and US was used for guidance of steroid injection and to assess treatment efficacy. METHODS: Forty swollen ankles regions were studied in 30 patients (median age 6.5 years, range 1-16 years) with JIA. All patients were assessed clinically, by US (synovial hypertrophy, effusion) and by color Doppler (synovial hyperemia) before and 4 weeks after US-guided steroid injection. RESULTS: US detected 121 compartments with active disease (joints, tendon sheaths and 1 ganglion cyst). Multiple compartments were involved in 80% of the ankle regions. The talo-crural joint, posterior subtalar joint, midfoot joints and tendon sheaths were affected in 78%, 65%, 30% and 55% respectively. Fifty active tendon sheaths were detected, and multiple tendons were involved in 12 of the ankles. US-guidance allowed accurate placement of the corticosteroid in all 85 injected compartments, with a low rate of subcutaneous atrophy (4,7%). Normalization or regression of synovial hypertrophy was obtained in 89%, and normalization of synovial hyperemia in 89%. Clinical resolution of active arthritis was noted in 72% of the ankles. CONCLUSIONS: US enabled exact anatomical location of synovial inflammation in the ankle region of JIA patients. The talo-crural joint was not always involved. Disease was frequently found in compartments difficult to evaluate clinically. US enabled exact guidance of steroid injections, gave a low rate of subcutaneous atrophy and was proved valuable for follow-up examinations. Normalization or regression of synovial hypertrophy and hyperemia was achieved in most cases, which supports the notion that US is an important tool in the management of ankle involvement in JIA

    The Role of Bone Marrow Edema and Lymphangiogenesis in Inflammatory-Erosive Arthritis

    No full text
    A common feature of autoimmune diseases is the perpetual production of macrophage, dendritic and/or osteoclast effector cells, which mediate parenchymal tissue destruction in end organs. In support of this, we have demonstrated previously that patients and mice with inflammatory-erosive arthritis have a marked increase in circulating CD11b+ precursor cells, which are primed for osteoclastogenesis, and that this increase in osteoclast precursors (OCPs) is due to systemically increased TNF production. From these data, we proposed a unifying hypothesis to explain these osteoimmunologic findings during the pathogenesis of inflammatory-erosive arthritis, which has three postulates: (1) myelopoiesis chronically induced by TNF has profound effects on the bone marrow and joint tissues that should be evident from a longitudinal MRI; (2) TNF alters the chemokine/chemokine receptor axis in the bone marrow to stimulate OCP release into the blood, and (3) OCP-mediated lymphangiogenesis occurs in the end organ as a compensatory mechanism to drain the inflammation and remove by-products of joint catabolism. Here, we describe our recent experimental findings that support these hypotheses and speculate on how this information can be used as diagnostic biomarkers and tools to discover novel therapies to treat patients with inflammatory-erosive arthritis
    corecore