1,198 research outputs found

    Inclusive top-pair production phenomenology with TOPIXS

    Full text link
    We discuss various aspects of inclusive top-quark pair production based on TOPIXS, a new, flexible program that computes the production cross section at the Tevatron and LHC at next-to-next-to-leading logarithmic accuracy in soft and Coulomb resummation, including bound-state effects and the complete next-to-next-to-leading order result in the q-qbar channel, which has recently become available. We present the calculation of the top-pair cross section in pp collisions at 8 TeV centre-of-mass energy, as well as the cross sections for hypothetical heavy quarks in extensions of the standard model. The dependence on the parton distribution input is studied. Further we investigate the impact of LHC top cross section measurements at sqrt(s)=7 TeV on global fits of the gluon distribution using the NNPDF re-weighting method.Comment: 27 pages, 5 figures; v2: corrected typos in Eqs. (2.8) and (6.2) and the text, added footnote on page 4, matches published versio

    Imaging Autophagy in hiPSC-Derived Midbrain Dopaminergic Neuronal Cultures for Parkinson’s Disease Research

    Get PDF
    To appreciate the positive or negative impact of autophagy during the initiation and progression of human diseases, the isolation or de novo generation of appropriate cell types is required to support focused in vitro assays. In human neurodegenerative diseases such as Parkinson’s disease (PD), specific subsets of acutely sensitive neurons become susceptible to stress-associated operational decline and eventual cell death, emphasizing the need for functional studies in those vulnerable groups of neurons. In PD, a class of dopaminergic neurons in the ventral midbrain (mDANs) is affected. To study these, human-induced pluripotent stem cells (hiPSCs) have emerged as a valuable tool, as they enable the establishment and study of mDAN biology in vitro. In this chapter, we describe a stepwise protocol for the generation of mDANs from hiPSCs using a monolayer culture system. We then outline how imaging-based autophagy assessment methodologies can be applied to these neurons, thereby providing a detailed account of the application of imaging-based autophagy assays to human iPSC-derived mDAN

    W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD

    Full text link
    We consider the production of W bosons in hadron collisions, and the subsequent leptonic decay W->lnu_l. We study the asymmetry between the rapidity distributions of the charged leptons, and we present its computation up to the next-to-next-to-leading order (NNLO) in QCD perturbation theory. Our calculation includes the dependence on the lepton kinematical cuts that are necessarily applied to select W-> lnu_l events in actual experimental analyses at hadron colliders. We illustrate the main differences between the W and lepton charge asymmetry, and we discuss their physical origin and the effect of the QCD radiative corrections. We show detailed numerical results on the charge asymmetry in ppbar collisions at the Tevatron, and we discuss the comparison with some of the available data. Some illustrative results on the lepton charge asymmetry in pp collisions at LHC energies are presented.Comment: 37 pages, 21 figure

    PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism

    Get PDF
    We respond to some criticism questioning the validity of the current Standard Model Higgs exclusion limits at the Tevatron, due to the significant dependence of the dominant production cross section from gluon-gluon fusion on the choice of parton distribution functions (PDFs) and the strong coupling (alpha_S). We demonstrate the ability of the Tevatron jet data to discriminate between different high-x gluon distributions, performing a detailed quantitative comparison to show that fits not explicitly including these data fail to give a good description. In this context we emphasise the importance of the consistent treatment of luminosity uncertainties. We comment on the values of alpha_S obtained from fitting deep-inelastic scattering data, particularly the fixed-target NMC data, and we show that jet data are needed for stability. We conclude that the Higgs cross-section uncertainties due to PDFs and alpha_S currently used by the Tevatron and LHC experiments are not significantly underestimated, contrary to some recent claims.Comment: 44 pages, 19 figures. v2: version published in JHEP (paragraph added at bottom of p.15

    Detection of helicoidal motion in the optical jet of PKS 0521-365

    Get PDF
    The jet activity of active galactic nuclei (AGNs), and its interaction with the interstellar medium, may play a pivotal role in the processes that regulate the growth and star formation of its host galaxy. Observational evidence that pinpoints the conditions of such interaction is paramount to unveil the physical processes involved. We report on the discovery of extended emission-line regions exhibiting an S-shaped morphology along the optical jet of the radioloud AGN PKS 0521-365 (z = 0.055), by using long-slit spectroscopic observations obtained with FOcal Reducer/low dispersion Spectrograph 2 on the Very Large Telescope. The velocity pattern derived from the [O II].3727 angstrom, H beta lambda 4861 angstrom and [O III] lambda lambda 4959, 5007 angstrom emission lines is well fitted by a sinusoidal function of the form: v(r) = alpha r(1/2)sin(beta r(1/2) + gamma), suggesting helicoidal motions along the jet up to distances of 20 kpc. We estimate a lower limit for the mass of the outflowing ionized gas along the jet of similar to 10(4)M(circle dot). Helical magnetic fields and jet precession have been proposed to explain helicoidal paths along the jet at pc scales; nevertheless, it is not clear yet whether these hypotheses may hold at kpc scales

    Globular Cluster Distance Determinations

    Get PDF
    The present status of the distance scale to Galactic globular clusters is reviewed. Six distance determination techniques which are deemed to be most reliable are discussed in depth. These different techniques are used to calibrate the absolute magnitude of the RR Lyrae stars. The various calibrations fall into three groups. Main sequence fitting using Hipparcos parallaxes, theoretical HB models and the RR Lyrae in the LMC all favor a bright calibration, implying a `long' globular cluster distance scale. White dwarf fitting and the astrometric distances yield a somewhat fainter RR Lyrae calibration, while the statistical parallax solution yields faint RR Lyrae stars implying a `short' distance scale to globular clusters. Various secondary distance indicators discussed all favor the long distance scale. The `long' and `short' distance scales differ by (0.31+/-0.16) mag. Averaging together all of the different distance determinations yields Mv(RR) = (0.23+/-0.04)([Fe/H] + 1.6) + (0.56+/-0.12) mag.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in pres

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Predictions for Higgs production at the Tevatron and the associated uncertainties

    Get PDF
    We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism gg→Hgg \to H and the Higgs-strahlung processes qqˉ→VHq \bar q \to VH with V=W/ZV=W/Z, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use of an effective theory approach in the determination of the radiative corrections in the gg→Hgg \to H process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs--strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fusion channel, possibly shifting the central values of the next-to-next-to-leading order cross sections by more than ≈40\approx 40%. These uncertainties are thus significantly larger than the ≈10\approx 10% error assumed by the CDF and D0 experiments in their recent analysis that has excluded the Higgs mass range MH=M_H=162-166 GeV at the 95% confidence level. These exclusion limits should be, therefore, reconsidered in the light of these large theoretical uncertainties.Comment: 40 pages, 12 figures. A few typos are corrected and some updated numbers are provide

    Geographical variation in radiological services: a nationwide survey

    Get PDF
    BACKGROUND: Geographical variation in health care services challenges the basic principle of fair allocation of health care resources. This study aimed to investigate geographical variation in the use of X-ray, CT, MRI and Ultrasound examinations in Norway, the contribution from public and private institutions, and the impact of accessibility and socioeconomic factors on variation in examination rates. METHODS: A nationwide survey of activity in all radiological institutions for the year 2002 was used to compare the rates per thousand of examinations in the counties. The data format was files/printouts where the examinations were recorded according to a code system. RESULTS: Overall rates per thousand of radiological examinations varied by a factor of 2.4. The use of MRI varied from 170 to 2, and CT from 216 to 56 examinations per 1000 inhabitants. Single MRI examinations (knee, cervical spine and head/brain) ranged high in variation, as did certain other spine examinations. For examination of specific organs, the counties' use of one modality was positively correlated with the use of other modalities. Private institutions accounted for 28% of all examinations, and tended towards performing a higher proportion of single examinations with high variability. Indicators of accessibility correlated positively to variation in examination rates, partly due to the figures from the county of Oslo. Correlations between examination rates and socioeconomic factors were also highly influenced by the figures from this county. CONCLUSION: The counties use of radiological services varied substantially, especially CT and MRI examinations. A likely cause of the variation is differences in accessibility. The coexistence of public and private institutions may be a source of variability, along with socioeconomic factors. The findings represent a challenge to the objective of equality in access to health care services, and indicate a potential for better allocation of overall health care resources. PREVIOUS PUBLICATION: The data applied in this article was originally published in Norwegian in: BĂžrretzen I, Lysdahl KB, Olerud HM: Radiologi i Noreg – undersĂžkingsfrekvens per 2002, tidstrendar, geografisk variasjon og befolkningsdose. StrĂ„levernRapport 2006:6. ØsterĂ„s: The Norwegian Radiation Protection Authority. The Norwegian Radiation Protection Authority has given the authors permission to republish the data
    • 

    corecore