5,862 research outputs found

    A Formal Definition of Perfect Bayesian Equilibrium for Extensive Games

    Get PDF
    Often, perfect bayesian equilibrium is loosely defined by stating that players should be sequentially rational given some beliefs in which Bayes rule is applied “whenever possible”. We show that there are games in which it is not clear what “whenever possible” means. Then, we provide a simple definition of perfect bayesian equilibrium for general extensive games that refines both weak perfect equilibrium and subgame perfect equilibrium.non-cooperative game theory, equilibrium concepts, perfect bayesian, Bayes rule.

    Alternative splicing of human prostaglandin G/H synthase mRNA and evidence of differential regulation of the resulting transcripts by transforming growth factor beta 1, interleukin 1 beta, and tumor necrosis factor alpha.

    Get PDF
    Prostaglandin G/H synthase (PGG/HS) is the rate-limiting enzyme in the conversion of arachidonic acid to prostaglandins and thromboxanes. We screened a human lung fibroblast cDNA library with an ovine PGG/HS cDNA and isolated a 2.3-kilobase clone (HCO-T9). Sequence analysis of this clone showed that (a) it contained the entire translated region of PGG/HS and (b) it displayed an in-frame splicing of the last 111 base pairs encoded by exon 9, which resulted in the elimination of the N-glycosylation site at residue 409. Polymerase chain reaction amplification with specific oligonucleotides of reverse-transcribed mRNA from diverse human tissues and cultured cells yielded 400- and 300-base pair fragments that corresponded, respectively, to the intact and spliced transcripts. The expression of these two transcripts in cultured human lung fibroblasts was differentially regulated by serum, transforming growth factor beta 1, interleukin 1 beta, tumor necrosis factor alpha, and phorbol 12-myristate 13-acetate, as each of these conditions stimulated preferentially the expression of the unspliced transcripts. The elimination of one of the four N-glycosylation sites by the alternative splicing of exon 9 and the differential regulation of this process by relevant cytokines and growth factors may represent a mechanism for the regulation of PGG/HS enzymatic activity under physiological or pathological conditions

    Phantom inflation and the "Big Trip"

    Get PDF
    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p=ωρp=\omega\rho, with ω<1\omega<-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue however in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the "big trip" and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition.Comment: 23 pages, 5 figures, LaTex, Phys. Lett. B (in press

    3D Well-composed Polyhedral Complexes

    Full text link
    A binary three-dimensional (3D) image II is well-composed if the boundary surface of its continuous analog is a 2D manifold. Since 3D images are not often well-composed, there are several voxel-based methods ("repairing" algorithms) for turning them into well-composed ones but these methods either do not guarantee the topological equivalence between the original image and its corresponding well-composed one or involve sub-sampling the whole image. In this paper, we present a method to locally "repair" the cubical complex Q(I)Q(I) (embedded in R3\mathbb{R}^3) associated to II to obtain a polyhedral complex P(I)P(I) homotopy equivalent to Q(I)Q(I) such that the boundary of every connected component of P(I)P(I) is a 2D manifold. The reparation is performed via a new codification system for P(I)P(I) under the form of a 3D grayscale image that allows an efficient access to cells and their faces

    Epidermal growth factor coordinately regulates the expression of prostaglandin G/H synthase and cytosolic phospholipase A2 genes in embryonic mouse cells.

    Get PDF
    Confluent, primary cultures of mouse embryo palate mesenchyme (MEPM) cells are refractory to activation of phospholipase A2 (PLA2) by the calcium ionophore A23187. However, treatment of these cultures with epidermal growth factor (EGF) permits the cells to activate PLA2 in response to A23187. We have developed this finding by exploring molecular mechanisms by which growth factors modulate mobilization and metabolism of arachidonic acid. We found chronic treatment (\u3e 6 h) of confluent MEPM cells with EGF (a) increases their ability to metabolize exogenous arachidonic acid to prostaglandin E2 (PGE2) and (b) stimulated constitutive expression of activities of PLA2 and cyclooxygenase (CyOx). Immunoprecipitation of [35S]proteins and Western blot analysis revealed EGF treatment stimulated synthesis and accumulation of PLA2c, CyOx-1, and CyOx-2. Northern hybridization analysis revealed EGF increased the steady-state levels of a transcript for the high molecular weight, cytosolic PLA2 (PLA2c), and both the 2.8- and 4.2-kb transcripts for CyOx-1 and CyOx-2, respectively. In vitro nuclear transcription assays showed a parallel increase in the transcription rate of the genes corresponding to CyOx-1 and PLA2c, but not CyOx-2, in response to EGF. Treatment with EGF had no effect on either synthesis of the low molecular weight, group II PLA2, accumulation of its transcript, or the transcription rate of its gene. Coordinate regulation of activities of PLA2 and CyOx in response to EGF did not parallel the mitogenic effects of EGF on confluent MEPM cells

    Regulation of transforming growth factor-beta 1 gene expression by glucocorticoids in normal human T lymphocytes.

    Get PDF
    Glucocorticoids (GC) modulate immune function in a number of ways, including suppression of T cell proliferation and other IL-2-mediated T cell functions. These inhibitory effects are similar to those induced by transforming growth factor-beta 1 (TGF-beta 1), a cytokine with potent T cell inhibiting activities. We examined the hypothesis that GC effects may be at least partially achieved through modulation of the expression of the TGF-beta 1 gene in activated T cells. Normal T cells were cultured with or without purified phytohemagglutinin (PHA-p) and 4 beta-phorbol 12-myristate 13-acetate (PMA) in the presence or absence of the synthetic GC, dexamethasone (100-200 micrograms/ml). The production of latent and active forms of TGF beta by these cells were analyzed by immunoblotting and bioassays. The steady-state levels of TGF-beta 1 mRNA were analyzed in total RNA from these cells by Northern hybridizations using a human TGF-beta 1 cDNA. The results showed that dexamethasone caused an increase in TGF beta production and a dose-dependent two to fourfold increase in TGF-beta 1 mRNA in activated as well as in unstimulated T cells, 1 h after exposure of the cultures to the steroid. The increase in TGF-beta 1 mRNA levels by dexamethasone was further potentiated two to threefold by cycloheximide, suggesting that the steroid effect may be due to inhibition of the synthesis of proteins that decrease TGF-beta 1 gene transcription or the stability of its transcripts. Finally, in vitro nuclear transcription studies indicated the dexamethasone effects on TGF-beta 1 gene expression to be largely transcriptional

    Regulation of human lung fibroblast alpha 1(I) procollagen gene expression by tumor necrosis factor alpha, interleukin-1 beta, and prostaglandin E2.

    Get PDF
    We investigated the participation of prostaglandin (PG) E2 in the regulation of the alpha 1(I) procollagen gene expression by tumor necrosis factor alpha (TNF alpha), and interleukin-1 beta (IL-1 beta) in normal adult human lung fibroblasts. TNF alpha (100 units/ml) and IL-1 beta (100 units/ml) stimulated the production of PGE2 and caused a dose-dependent inhibition of up to 54 and 66%, respectively, of the production of type I procollagen. Preincubation of cultures with indomethacin partially reversed the inhibition of procollagen production induced by the cytokines. Cytokine-stimulated endogenous fibroblast PG accounted for 35 and 68% of the inhibition induced by TNF alpha and IL-1 beta, respectively. Steady-state mRNA levels for alpha 1(I) procollagen paralleled the changes in collagen production. The transcription rate of the alpha 1(I) procollagen gene was reduced by 58% by TNF alpha and by 43% by IL-1 beta. Cytokine-stimulated endogenous PG production accounted for half of these effects. These results indicate that TNF alpha and IL-1 beta inhibit the expression of the alpha 1(I) procollagen gene in human lung fibroblasts at the transcriptional level by a PGE2-independent effect as well as through the effect of endogenous fibroblast PGE2 released under the stimulus of the cytokines
    corecore