34 research outputs found

    Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix

    Full text link
    We discuss an algebraic method for constructing eigenvectors of the transfer matrix of the eight vertex model at the discrete coupling parameters. We consider the algebraic Bethe ansatz of the elliptic quantum group Eτ,η(sl2)E_{\tau, \eta}(sl_2) for the case where the parameter η\eta satisfies 2Nη=m1+m2τ2 N \eta = m_1 + m_2 \tau for arbitrary integers NN, m1m_1 and m2m_2. When m1m_1 or m2m_2 is odd, the eigenvectors thus obtained have not been discussed previously. Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin chain, some of which are shown to be related to the sl2sl_2 loop algebra symmetry of the XXZ spin chain. We show that the dimension of some degenerate eigenspace of the XYZ spin chain on LL sites is given by N2L/NN 2^{L/N}, if L/NL/N is an even integer. The construction of eigenvectors of the transfer matrices of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices

    Irreducible representations of Upq[gl(2/2)]

    Full text link
    The two-parametric quantum superalgebra Upq[gl(2/2)]U_{pq}[gl(2/2)] and its representations are considered. All finite-dimensional irreducible representations of this quantum superalgebra can be constructed and classified into typical and nontypical ones according to a proposition proved in the present paper. This proposition is a nontrivial deformation from the one for the classical superalgebra gl(2/2), unlike the case of one-parametric deformations.Comment: Latex, 8 pages. A reference added in v.

    Algebraic Bethe ansatz method for the exact calculation of energy spectra and form factors: applications to models of Bose-Einstein condensates and metallic nanograins

    Full text link
    In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunneling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunneling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics. Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions. In applying all of the above models to physical situations, the need for an exact analysis of small scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.Comment: 49 pages, 1 figure, invited review for J. Phys. A., published version available at http://stacks.iop.org/JPhysA/36/R6

    Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy

    Full text link
    It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, more generally, Clifford configurations renders the dSKP equation a natural object of inversive geometry on the plane. The geometric and algebraic integrability of dSKP lattices and their reductions to lattices of Menelaus-Darboux, Schwarzian KdV, Schwarzian Boussinesq and Schramm type is discussed. The dSKP and discrete Schwarzian Boussinesq equations are shown to represent discretizations of families of quasi-conformal mappings.Comment: 26 pages, 9 figure

    Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    Get PDF
    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics

    Innate Synchronous Oscillations in Freely-Organized Small Neuronal Circuits

    Get PDF
    BACKGROUND: Information processing in neuronal networks relies on the network's ability to generate temporal patterns of action potentials. Although the nature of neuronal network activity has been intensively investigated in the past several decades at the individual neuron level, the underlying principles of the collective network activity, such as the synchronization and coordination between neurons, are largely unknown. Here we focus on isolated neuronal clusters in culture and address the following simple, yet fundamental questions: What is the minimal number of cells needed to exhibit collective dynamics? What are the internal temporal characteristics of such dynamics and how do the temporal features of network activity alternate upon crossover from minimal networks to large networks? METHODOLOGY/PRINCIPAL FINDINGS: We used network engineering techniques to induce self-organization of cultured networks into neuronal clusters of different sizes. We found that small clusters made of as few as 40 cells already exhibit spontaneous collective events characterized by innate synchronous network oscillations in the range of 25 to 100 Hz. The oscillation frequency of each network appeared to be independent of cluster size. The duration and rate of the network events scale with cluster size but converge to that of large uniform networks. Finally, the investigation of two coupled clusters revealed clear activity propagation with master/slave asymmetry. CONCLUSIONS/SIGNIFICANCE: The nature of the activity patterns observed in small networks, namely the consistent emergence of similar activity across networks of different size and morphology, suggests that neuronal clusters self-regulate their activity to sustain network bursts with internal oscillatory features. We therefore suggest that clusters of as few as tens of cells can serve as a minimal but sufficient functional network, capable of sustaining oscillatory activity. Interestingly, the frequencies of these oscillations are similar those observed in vivo
    corecore