3,780 research outputs found

    Sprinklers: A Randomized Variable-Size Striping Approach to Reordering-Free Load-Balanced Switching

    Full text link
    Internet traffic continues to grow exponentially, calling for switches that can scale well in both size and speed. While load-balanced switches can achieve such scalability, they suffer from a fundamental packet reordering problem. Existing proposals either suffer from poor worst-case packet delays or require sophisticated matching mechanisms. In this paper, we propose a new family of stable load-balanced switches called "Sprinklers" that has comparable implementation cost and performance as the baseline load-balanced switch, but yet can guarantee packet ordering. The main idea is to force all packets within the same virtual output queue (VOQ) to traverse the same "fat path" through the switch, so that packet reordering cannot occur. At the core of Sprinklers are two key innovations: a randomized way to determine the "fat path" for each VOQ, and a way to determine its "fatness" roughly in proportion to the rate of the VOQ. These innovations enable Sprinklers to achieve near-perfect load-balancing under arbitrary admissible traffic. Proving this property rigorously using novel worst-case large deviation techniques is another key contribution of this work

    Intensity-Dependent Enhancement of Saturable Absorption in PbS-Au4 Nanohybrid Composites: Evidence for Resonant Energy Transfer by Auger Recombination

    Full text link
    Intensity-dependent enhancement of saturable absorption in a film of PbS-Au4 nanohybrid composites has been observed by femtosecond time-resolved transient absorption measurement at 780 nm. The nonlinear absorption coefficient of saturable absorption in PbS-Au4 nanohybrid composites is found to be dependent on excitation irradiance and it is determined to be -2.9 cm/GW at 78 GW/cm2, an enhancement of nearly fourfold in comparison with that of pure PbS quantum dots (QDs). The enhancement is attributed to excitation of surface plasmon by resonant energy transfer between PbS QDs and Au nanoparticles through Auger recombination.Comment: 14 pages, 3 figures. Accepted in Appl. Phys. Lett. (2008

    Measurements of the methane relaxation times for application to the infrared emission models of the upper atmospheres of outer planets and Titan

    Get PDF
    The 7.8 micrometer emission from the nu(sub 4) band of methane (CH4) is a regularly observed feature in the stratosphere of all the giant planets and Titan. On Jupiter, enhancements in this emission are associated with the infrared hot spots in the auroral zone. Attempts to model this phenomenon in particular, and to understand the role of methane in general, have been hampered in part by a lack of adequate laboratory measurements of the collisional relaxation times for the nu(sub 3) and nu(sub 4) levels over the appropriate temperature range. To provide this needed data, a series of laboratory experiments were initiated. In the experimental arrangement the nu(sub3) band of methane is pumped at 3.3 micrometers using a pulsed infrared source (Nd:YAG/dye laser system equipped with a wave-length extender). The radiative lifetime of the nu(sub 3) level (approximately 37 ms) is much shorter than the nu(sub 4) lifetime (approximately 390 ms); however, a rapid V-V energy transfer rate ensures that the nu(sub 4) level is substantially populated. The photoacoustic technique is used to acquire relaxation rate information. The experiments are performed using a low-temperature, low-pressure cell. Experimental apparatus and technique are described. In addition some of the experimental difficulties associated with making these measurements are discussed and some preliminary results are presented

    Single Stranded DNA Induced Assembly of Gold Nanoparticles

    Get PDF
    The binding affinity of single stranded DNA (ssDNA) for gold nanoparticle surface is studied in this work. The data indicate that the strength of interaction between ssDNA and Au particle surface is closely related to the particle size, with smaller particles (5 nm) producing the most pronounced effects. From these experimental findings, a single stranded DNA (ssDNA) based method to assimilate 13 and 5 nm gold nanoparticles was developed, and verified by transmission electron microscopy (TEM).Singapore-MIT Alliance (SMA

    Constraining Model Uncertainty in Plasma Equation-of-State Models with a Physics-Constrained Gaussian Process

    Full text link
    Equation-of-state (EOS) models underpin numerical simulations at the core of research in high energy density physics, inertial confinement fusion, laboratory astrophysics, and elsewhere. In these applications EOS models are needed that span ranges of thermodynamic variables that far exceed the ranges where data are available, making uncertainty quantification (UQ) of EOS models a significant concern. Model uncertainty, arising from the choice of functional form assumed for the EOS, is a major challenge to UQ studies for EOS that is usually neglected in favor of parameteric and data uncertainties which are easier to capture without violating the physical constraints on EOSs. In this work we introduce a new statistical EOS construction that naturally captures model uncertainty while automatically obeying the thermodynamic consistency constraint. We apply the model to existing data for B4CB_4C\ to place an upper bound on the uncertainty in the EOS and Hugoniot, and show that the neglect of thermodynamic constraints overestimates the uncertainty by factors of several when data are available and underestimates when extrapolating to regions where they are not. We discuss extensions to this approach, and the role of GP-based models in accelerating simulation and experimental studies, defining portable uncertainty-aware EOS tables, and enabling uncertainty-aware downstream tasks.Comment: 11 pages, 5 figure
    corecore