4 research outputs found

    Complexation of DNA with Thermoresponsive Charged Microgels: Role of Swelling State and Electrostatics

    Get PDF
    This research was funded by projects RTI2018-101309-B-C21 and PID2020-631-116615RA-I00, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and by project PY20_00138, funded by Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades (PAIDI2020).Micro- and nanogels are being increasingly used to encapsulate bioactive compounds. Their soft structure allows large loading capacity while their stimuli responsiveness makes them extremely versatile. In this work, the complexation of DNA with thermoresponsive microgels is presented. To this end, PEGylated charged microgels based on poly-N-isopropylacrylamide have been synthesized, allowing one to explore the electrostatics of the complexation. Cationic microgels complexate spontaneously by electrostatic attraction to oppositely charged DNA as demonstrated by electrophoretic mobility of the complexes. Then, Langmuir monolayers reveal an increased interaction of DNA with swollen microgels (20 degrees C). Anionic microgels require the presence of multivalent cations (Ca2+) to promote the complexation, overcoming the electrostatic repulsion with negatively charged DNA. Then again, Langmuir monolayers evidence their complexation at the surface. However, the presence of Ca2+ seems to induce profound changes in the interaction and surface conformation of anionic microgels. These alterations are further explored by measuring adsorbed films with the pendant drop technique. Conformational changes induced by Ca2+ on the structure of the microgel can ultimately affect the complexation with DNA and should be considered in the design. The combination of microstructural and surface properties for microgels offers a new perspective into complexation of DNA with soft particles with biomedical applications.MCIN/AEI RTI2018-101309-B-C21 PID2020-631-116615RA-I00Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades PY20_0013

    Challenges and improvement pathways to develop quasi-1D (Sb1-xBix)2Se3-based materials for optically tuneable photovoltaic applications. Towards chalcogenide narrow-bandgap devices

    Get PDF
    Quasi-1D chalcogenides have shown great promises in the development of emerging photovoltaic technologies. However, most quasi-1D semiconductors other than Sb2Se3 and Sb2S3 have been seldom investigated for energy generation applications. Indeed, cationic or anionic alloying strategies allow changing the bandgap of these materials, opening the door to the development of an extended range of chalcogenides with tuneable optical and electrical properties. In this work, Bi incorporation into the Sb2Se3 structure has been proved as an effective approach to modulate the bandgap between 0.1. In order to better understand the underlying mechanisms leading to the formation of (Sb1-xBix)2Se3, and thus design specific strategies to enhance its properties, thin films with different annealing time and temperature have been synthesized and characterized. Interestingly, it has been observed that Sb2Se3 and Bi2Se3 are formed first, with Bi melting at 300 ÂżC and diffusing rapidly towards the surface of the film. At higher temperature, the binary compounds combine to form the solid solution, however as the dwell time increases, (Sb1-xBix)2Se3 decomposes again into Bi2Se3 and Sb. This study has shown that the material is essentially limited by compositional disorder and recombination via defects. Likewise, routes have been proposed to improve morphology and uniformity of the layer, achieving efficiencies higher than 1% for x > 0.2Postprint (published version

    Challenges and improvement pathways to develop quasi-1D (Sb1-xBix)2Se3-based materials for optically tuneable photovoltaic applications. Towards chalcogenide narrow-bandgap devices

    No full text
    Quasi-1D chalcogenides have shown great promises in the development of emerging photovoltaic technologies. However, most quasi-1D semiconductors other than Sb2Se3 and Sb2S3 have been seldom investigated for energy generation applications. Indeed, cationic or anionic alloying strategies allow changing the bandgap of these materials, opening the door to the development of an extended range of chalcogenides with tuneable optical and electrical properties. In this work, Bi incorporation into the Sb2Se3 structure has been proved as an effective approach to modulate the bandgap between 0.1. In order to better understand the underlying mechanisms leading to the formation of (Sb1-xBix)2Se3, and thus design specific strategies to enhance its properties, thin films with different annealing time and temperature have been synthesized and characterized. Interestingly, it has been observed that Sb2Se3 and Bi2Se3 are formed first, with Bi melting at 300ÂşC and diffusing rapidly towards the surface of the film. At higher temperature, the binary compounds combine to form the solid solution, however as the dwell time increases, (Sb1-xBix)2Se3 decomposes again into Bi2Se3 and Sb. This study has shown that the material is essentially limited by compositional disorder and recombination via defects. Likewise, routes have been proposed to improve morphology and uniformity of the layer, achieving efficiencies higher than 1% for x>0.2

    Polyethienimine interface dipole tuning for electron selective contacts

    No full text
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work studies the use of thin layers of polyethylenimine (PEI) as an interface film to produce electron selective contacts for photovoltaic applications in crystalline silicon. Generally, in conjugated polyelectrolytes such as PEI with a high Lewis basicity, charge is accumulated along the chain of the polymer and counter anions from the solvent create an intense dipole array. In this work, part of the amine groups in PEI are protonated by the solvent that behaves as a weak Bronsted acid during the process. The PEI band modification is able to eliminate Fermi level pinning at metal/semiconductor junctions as it shifts the work function of the metallic electrode by more than 1 eV. As a consequence, induced charge transport between the metal and the semiconductor forms an electron accumulation region and promotes enhanced selectivity.This research has been supported by Spanish government through Grants PID2019-109215RB-C41 (SCALED), PID2019-109215RB-C43, PID2020-116719RB-C41 (MATER ONE) and PID2020-115719RB-C21 (GETPV) and funded by MCIN/AEI/ 10.13039/501100011033. Besides this the work is also supported by the international Grants SENESCYT-2018 funded by Ecuadorian government.Peer ReviewedPostprint (author's final draft
    corecore