19 research outputs found

    Informatics: the fuel for pharmacometric analysis

    Get PDF
    The current informal practice of pharmacometrics as a combination art and science makes it hard to appreciate the role that informatics can and should play in the future of the discipline and to comprehend the gaps that exist because of its absence. The development of pharmacometric informatics has important implications for expediting decision making and for improving the reliability of decisions made in model-based development. We argue that well-defined informatics for pharmacometrics can lead to much needed improvements in the efficiency, effectiveness, and reliability of the pharmacometrics process. The purpose of this paper is to provide a description of the pervasive yet often poorly appreciated role of informatics in improving the process of data assembly, a critical task in the delivery of pharmacometric analysis results. First, we provide a brief description of the pharmacometric analysis process. Second, we describe the business processes required to create analysis-ready data sets for the pharmacometrician. Third, we describe selected informatic elements required to support the pharmacometrics and data assembly processes. Finally, we offer specific suggestions for performing a systematic analysis of existing challenges as an approach to defi ning the next generation of pharmacometric informatics

    Efficacy, safety, tolerability and population pharmacokinetics of tedizolid, a novel antibiotic, in Latino patients with acute bacterial skin and skin structure infections

    Get PDF
    AbstractAcute bacterial skin and skin structure infections are caused mainly by Gram-positive bacteria which are often treated with intravenous vancomycin, daptomycin, or linezolid, with potential step down to oral linezolid for outpatients. Tedizolid phosphate 200mg once daily treatment for six days demonstrated non-inferior efficacy, with a favourable safety profile, compared with linezolid 600mg twice daily treatment for 10 days in the Phase 3 ESTABLISH-1 and -2 trials. The objective of the current post-hoc analysis of the integrated dataset of ESTABLISH-1 and -2 was to evaluate the efficacy and safety of tedizolid (N=182) vs linezolid (N=171) in patients of Latino origin enrolled into these trials. The baseline demographic characteristics of Latino patients were similar between the two treatment groups. Tedizolid demonstrated comparable efficacy to linezolid at 48–72h in the intent-to-treat population (tedizolid: 80.2% vs linezolid: 81.9%). Sustained clinical success rates were comparable between tedizolid- and linezolid-treated Latino patients at end-of-therapy (tedizolid: 86.8% vs linezolid: 88.9%). Tedizolid phosphate treatment was well tolerated by Latino patients in the safety population with lower abnormal platelet counts at end-of-therapy (tedizolid: 3.4% vs linezolid: 11.3%, p=0.0120) and lower incidence of gastrointestinal adverse events (tedizolid: 16.5% vs linezolid: 23.5%). Population pharmacokinetic analysis suggested that estimated tedizolid exposure measures in Latino patients vs non-Latino patients were similar. These findings demonstrate that tedizolid phosphate 200mg, once daily treatment for six days was efficacious and well tolerated by patients of Latino origin, without warranting dose adjustment

    Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function

    Get PDF
    Prolonged treatment with the oxazolidinone linezolid is associated with myelosuppression, lactic acidosis, and neuropathies, toxicities likely caused by impairment of mitochondrial protein synthesis (MPS). To evaluate the potential of the novel oxazolidinone tedizolid to cause similar side effects, nonclinical and pharmacokinetic assessments were conducted. In isolated rat heart mitochondria, tedizolid inhibited MPS more potently than did linezolid (average [± standard error of the mean] 50% inhibitory concentration [IC50] for MPS of 0.31 ± 0.02 μM versus 6.4 ± 1.2 μM). However, a rigorous 9-month rat study comparing placebo and high-dose tedizolid (resulting in steady-state area under the plasma concentration-time curve values about 8-fold greater than those with the standard therapeutic dose in humans) showed no evidence of neuropathy. Additional studies explored why prolonged, high-dose tedizolid did not cause these mitochondriopathic side effects despite potent MPS inhibition by tedizolid. Murine macrophage (J774) cell fractionation studies found no evidence of a stable association of tedizolid with eukaryotic mitochondria. Monte Carlo simulations based on population pharmacokinetic models showed that over the course of a dosing interval using standard therapeutic doses, free plasma concentrations fell below the respective MPS IC50 in 84% of tedizolid-treated patients (for a median duration of 7.94 h) and 38% of linezolid-treated patients (for a median duration of 0 h). Therapeutic doses of tedizolid, but not linezolid, may therefore allow for mitochondrial recovery during antibacterial therapy. The overall results suggest that tedizolid has less potential to cause myelosuppression and neuropathy than that of linezolid during prolonged treatment courses. This, however, remains a hypothesis that must be confirmed in clinical studies

    A Population Pharmacokinetic and Pharmacodynamic Analysis of Peginesatide in Patients with Chronic Kidney Disease on Dialysis.

    Get PDF
    Peginesatide (OMONTYS®) is an erythropoiesis-stimulating agent that was indicated in the United States for the treatment of anemia due to chronic kidney disease in adult patients on dialysis prior to its recent marketing withdrawal by the manufacturer. The objective of this analysis was to develop a population pharmacokinetic and pharmacodynamic model to characterize the time-course of peginesatide plasma and hemoglobin concentrations following intravenous and subcutaneous administration. Plasma samples (n = 2,665) from 672 patients with chronic kidney disease (on or not on dialysis) and hemoglobin samples (n = 18,857) from 517 hemodialysis patients (subset of the 672 patients), were used for pharmacokinetic-pharmacodynamic model development in NONMEM VI. The pharmacokinetic profile of peginesatide was best described by a two-compartment model with first-order absorption and saturable elimination. The relationship between peginesatide and hemoglobin plasma concentrations was best characterized by a modified precursor-dependent lifespan indirect response model. The estimate of maximal stimulatory effect of peginesatide on the endogenous production rate of progenitor cells (Emax) was 0.54. The estimate of peginesatide drug concentration required for 50% of maximal response (EC50) estimates was 0.4 µg/mL. Several significant (P<0.005) covariates affected simulated peginesatide exposure by ≤36%. Based upon ≤0.2 g/dL effects on simulated hemoglobin levels, none were considered clinically relevant

    Visual predictive check for the PK-PD model of peginesatide using traditional visual predictive check.

    No full text
    <p>Visual predictive check for the PK-PD model of peginesatide using traditional visual predictive check.</p

    Peginesatide parameter estimates and their associated precision for the final PK-PD Model, including bootstrap evaluation results.

    No full text
    <p>1. Based on 935/1000 successfully converged bootstrap runs;</p><p>SD: Standard deviation; NA: not applicable.</p

    Review of peginesatide doses and pharmacokinetic sampling times, by study.

    No full text
    <p>Review of peginesatide doses and pharmacokinetic sampling times, by study.</p

    Covariates evaluated on the PK and PD parameters of peginesatide in NONMEM using forward selection and backward elimination approach.

    No full text
    <p>Covariates evaluated on the PK and PD parameters of peginesatide in NONMEM using forward selection and backward elimination approach.</p

    Effect of PK covariates on simulated peginesatide plasma concentrations and hemoglobin levels in patients with chronic kidney disease on dialysis following 10 mg SC dose every 4 weeks for 52 weeks.

    No full text
    <p>Upper panel: effect of PK covariates on simulated peginesatide plasma concentrations; Middle and lower panels: effect of PK covariates on simulated peginesatide hemoglobin concentrations. Note that in the panel for hemoglobin levels by ESAD, the effect is very low and, as such, the profiles overlap. Abbreviations: BMI = body mass index, ALP = alkaline phosphatase, TBIL = total bilirubin, CR = serum creatinine, ETHN = ethnicity, and ESAD = erythropoiesis-stimulating agent dose.</p
    corecore