131 research outputs found

    Repetitive transcranial magnetic stimulation as an adjunctive treatment for negative symptoms and cognitive impairment in patients with schizophrenia: a randomized, double-blind, sham-controlled trial

    Get PDF
    Purpose: Effective treatment options for negative symptoms and cognitive impairment in patients with schizophrenia are still to be developed. The present study was to examine potential benefits of repetitive transcranial magnetic stimulation (rTMS) to improve negative symptoms and cognition in this patient population. Methods: The study was a 4-week, randomized, double-blind sham-controlled trial. Patients with schizophrenia were treated with adjunctive 20-Hz rTMS for 4 weeks or sham condition to the left dorsolateral prefrontal cortex (DLPFC). Negative symptoms were measured using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative symptom scale (PANSS) negative subscale at baseline and week 4. Cognitive function was measured using the MATRICS Consensus Cognitive Battery (MCCB) at the same two time points. In addition, possible moderators for rTMS treatment efficacy were explored. Results: Sixty patients (33 in the treatment group, 27 in the sham group) completed the study. There was a significant decrease in negative symptoms after 4-week rTMS treatment as measured by the SANS total score and the PANSS negative symptom subscale score. However, there was no significant improvement in cognition with rTMS treatment. Stepwise multiple linear regression analysis suggested that the baseline severity of positive symptoms may predict poorer improvement in negative symptoms at week 4. Conclusion: Twenty-Hz rTMS stimulation over left DLPFC as an adjunctive treatment might be beneficial in improving negative symptoms of schizophrenia. Future studies with a longer treatment duration and a larger sample size are needed. Clinical trial ID: NCT01940939

    Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and Changes after Medication

    Get PDF
    BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naΓ―ve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment

    Identification of hydatidosis-related modules and key regulatory genes

    No full text
    Background Echinococcosis caused by larval of Echinococcus is prevalent all over the world. Although clinical experience showed that the presence of tapeworms could not be found in liver lesions, the repeated infection and aggravation of lesions still occur in the host. Here, this study constructed a multifactor-driven disease-related dysfunction network to explore the potential molecular pathogenesis mechanism in different hosts after E.multilocularis infection. Method First, iTRAQ sequencing was performed on human liver infected with E.multilocularis. Second, obtained microRNAs(miRNAs) expression profiles of humans and canine infected with Echinococcus from the GEO database. In addition, we also performed differential expression analysis, protein interaction network analysis, enrichment analysis, and crosstalk analysis to obtain genes and modules related to E.multilocularis infection. Pivot analysis is used to calculate the potential regulatory effects of multiple factors on the module and identify related non-coding RNAs(ncRNAs) and transcription factors(TFs). Finally, we screened the target genes of miRNAs of Echinococcus to further explore its infection mechanism. Results A total of 267 differentially expressed proteins from humans and 3,635 differentially expressed genes from canine were obtained. They participated in 16 human-related dysfunction modules and five canine-related dysfunction modules, respectively. Both human and canine dysfunction modules are significantly involved in BMP signaling pathway and TGF-beta signaling pathway. In addition, pivot analysis found that 1,129 ncRNAs and 110 TFs significantly regulated human dysfunction modules, 158 ncRNAs and nine TFs significantly regulated canine dysfunction modules. Surprisingly, the Echinococcus miR-184 plays a role in the pathogenicity regulation by targeting nine TFs and one ncRNA in humans. Similarly, miR-184 can also cause physiological dysfunction by regulating two transcription factors in canine. Conclusion The results show that the miRNA-184 of Echinococcus can regulate the pathogenic process through various biological functions and pathways. The results laid a solid theoretical foundation for biologists to further explore the pathogenic mechanism of Echinococcosis

    A Novel Decentralized Scheme for Cooperative Compressed Spectrum Sensing in Distributed Networks

    No full text
    Compressed sensing (CS) recently turns out to be an effective approach to alleviate the sampling bottleneck in wideband spectrum sensing. However, the computation overhead incurred by compressed reconstruction is nontrivial, especially in a power-constrained cognitive radio (CR). Moreover, additional information, which is generally unavailable in practice, is needed in conventional CS-based wideband spectrum sensing schemes to improve the reconstruction quality as well as the detection performance. To address these issues, this paper proposes a novel decentralized scheme for cooperative compressed spectrum sensing in distributed CR networks. Our key observation is that the sparse signals are unnecessary to be reconstructed since the task of spectrum sensing is only interested in the spectrum occupancy status. The major novelty of the proposed scheme relates to the use of Karcher mean as a statistic indicating the spectrum occupancy status, thereby eliminating the compressed reconstruction stage and significantly reducing the computational complexity. Considering limited communication resources per CR, a decentralized implementation based on alternating direction method of multipliers is presented to calculate the Karcher mean via one-hop communications only. The superior performance of the proposed scheme is demonstrated by comparing with several existing decentralized schemes in terms of detection performance, communication overhead, and computational complexity

    Soluble transferrin receptor as a marker of erythropoiesis in patients undergoing high-flux hemodialysis

    No full text
    Anemia is a common complication in chronic kidney disease (CKD) patients receiving hemodialysis. The effect of high-flux dialysis (HFD) on anemia remains unclear. This prospective study aimed to evaluate the effect of HFD on anemia, and the potential of soluble transferrin receptor (sTfR) as a marker of iron status and erythropoiesis in CKD patients on hemodialysis. Forty patients, who switched from conventional low-flux dialysis to HFD for 12 months, were enrolled in this study. The levels of sTfR, hemoglobin (Hb), iron, and nutritional markers, as well as the dose of recombinant human erythropoietin (rhEPO) and use of chalybeate were determined at 0, 2, 6, and 12 months after starting HFD. HFD significantly increased the hemoglobin level and reduced sTfR level in CKD patients (p < 0.05). In addition, significant decreasing linear trends were observed for rhEPO dosage and chalybeate use (p < 0.05). The level of sTfR was positively correlated with the percentage of reticulocytes (RET%), rhEPO dose, and chalybeate use, while it was negatively correlated with Hb levels and total iron-binding capacity results (all p < 0.05). A univariate generalized estimating equation (GEE) model showed that the Hb level, RET%, rhEPO dose, and chalybeate use were the variables associated with sTfR levels. A multivariate GEE model showed that the time points when hemodialysis was performed were the variables associated significantly with sTfR levels. Overall, our findings suggest that HFD can effectively improve renal anemia in hemodialysis patients, and sTfR could be used as a marker of erythropoiesis in HFD patients

    Distributed Compressed Spectrum Sensing via Cooperative Support Fusion

    No full text
    Spectrum sensing in wideband cognitive radio (CR) networks faces several significant practical challenges, such as extremely high sampling rates required for wideband processing, impact of frequency-selective wireless fading and shadowing, and limitation in power and computing resources of single cognitive radio. In this paper, a distributed compressed spectrum sensing scheme is proposed to overcome these challenges. To alleviate the sampling bottleneck, compressed sensing mechanism is used at each CR by utilizing the inherent sparsity of the monitored wideband spectrum. Specifically, partially known support (PKS) of the sparse spectrum is incorporated into local reconstruction procedure, which can further reduce the required sampling rate to achieve a given recovery quality or improve the quality given the same sampling rate. To mitigate the impact of fading and shadowing, multiple CRs exploit spatial diversity by exchanging local support information among them. The fused support information is used to guide local reconstruction at individual CRs. In consideration of limited power per CR, local support information percolates over the network via only one-hop local information exchange. Simulation results testify the effectiveness of the proposed scheme by comparing with several existing schemes in terms of detection performance, communication load, and computational complexity. Moreover, the impact of system parameters is also investigated through simulations

    Original Article MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells

    No full text
    Abstract: Herpes simplex virus 1 (HSV-1) microRNAs (miRNAs) mostly located in transcription-associated transcript (LAT) region have been identified that play critical roles in the intricate host-pathogen interaction networks. Increasing evidences throw new insight into the role of miRNA-mediated miRNA-mRNA cross-talk in HSV-1 latent or acute infection. In the present study, we found that hsv-1 miR-H4-5p (here termed as miR-H4b) can down-regulate the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A, p16) in neuroblastoma (SHSY5Y) cell lines. Decreased expression of miR-H4b was directly related to attenuated cell proliferation and invasion as well as malfunction of cell cycle in recombinant SHSY5Y cells that stably expressing miR-H4b. Bioinformatics analysis and luciferase assays demonstrated miR-H4b can directly target p16 mRNA. MiR-H4b exerts its pro-proliferation function through inhibition of the p16-related PI3K-Akt pathways. Our findings provide, for the first time, significant clues regarding the role of herpesvirus-encoded miRNAs as a viral modulator to host cells
    • …
    corecore