17 research outputs found
Raoultella ornithinolytica in a healthy, young person: rapidly progressive sinusitis with orbital and intracranial involvement
Raoultella ornithinolytica is an encapsulated, Gram-negative, nonmotile, rod belonging to the Enterobacteriaceae family. Infections involving the gastrointestinal tract and the hepatopancreatobiliary system are most frequently reported, especially in immunocompromised patients. The authors present an unusual case of acute complicated sinusitis with orbital and intracranial involvement caused by R. ornithinolytica. The infection was rapidly progressive, even though the patient was a healthy, young person without any co-morbidities. The patientâs condition improved after antibiotic treatment and multiple ophthalmic and sinus surgeries
Effect of Visually Induced Motion Sickness from Head-Mounted Display on Cardiac Activity
Head-mounted display (HMD) virtual reality devices can facilitate positive experiences such as co-presence and deep immersion; however, motion sickness (MS) due to these experiences hinders the development of the VR industry. This paper proposes a method for assessing MS caused by watching VR content on an HMD using cardiac features. Twenty-eight undergraduate volunteers participated in the experiment by watching VR content on a 2D screen and HMD for 12 min each, and their electrocardiogram signals were measured. Cardiac features were statistically analyzed using analysis of covariance (ANCOVA). The proposed model for classifying MS was implemented in various classifiers using significant cardiac features. The results of ANCOVA reveal a significant difference between 2D and VR viewing conditions, and the correlation coefficients between the subjective ratings and cardiac features have significant results in the range of â0.377 to â0.711 (for SDNN, pNN50, and ln HF) and 0.653 to 0.677 (for ln VLF and ln VLF/ln HF ratio). Among the MS classification models, the linear support vector machine achieves the highest average accuracy of 91.1% (10-fold cross validation) and has a significant permutation test outcome. The proposed method can contribute to quantifying MS and establishing viewer-friendly VR by determining its qualities
Measurement of craving among gamers with internet gaming disorder using repeated presentations of game videos: a resting-state electroencephalography study
Abstract Background Internet gaming disorder (IGD) is receiving increasing attention owing to its effects on daily living and psychological function. Methods In this study, electroencephalography was used to compare neural activity triggered by repeated presentation of a stimulus in healthy controls (HCs) and those with IGD. A total of 42 adult men were categorized into two groups (IGD, nâ=â21) based on Y-IAT-K scores. Participants were required to watch repeated presentations of video games while wearing a head-mounted display, and the delta (D), theta (T), alpha (A), beta (B), and gamma (G) activities in the prefrontal (PF), central (C), and parieto-occipital (PO) regions were analyzed. Results The IGD group exhibited higher absolute powers of DC, DPO, TC, TPO, BC, and BPO than HCs. Among the IGD classification models, a neural network achieves the highest average accuracy of 93% (5-fold cross validation) and 84% (test). Conclusions These findings may significantly contribute to a more comprehensive understanding of the neurological features associated with IGD and provide potential neurological markers that can be used to distinguish between individuals with IGD and HCs
Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information
Abstract Many machine learning techniques provide a simple prediction for drug-drug interactions (DDIs). However, a systematically constructed database with pharmacokinetic (PK) DDI information does not exist, nor is there a machine learning model that numerically predicts PK fold change (FC) with it. Therefore, we propose a PK DDI prediction (PK-DDIP) model for quantitative DDI prediction with high accuracy, while constructing a highly reliable PK-DDI database. Reliable information of 3,627 PK DDIs was constructed from 3,587 drugs using 38,711 Food and Drug Administration (FDA) drug labels. This PK-DDIP model predicted the FC of the area under the time-concentration curve (AUC) within ± 0.5959. The prediction proportions within 0.8â1.25-fold, 0.67â1.5-fold, and 0.5â2-fold of the AUC were 75.77, 86.68, and 94.76%, respectively. Two external validations confirmed good prediction performance for newly updated FDA labels and FC from patientsâ. This model enables potential DDI evaluation before clinical trials, which will save time and cost
The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element
Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.N
Upconversion-Triggered Charge Separation in Polymer Semiconductors
Upconversion is a unique optical property which is driven by a sequential photon pumping and generation of higher energy photons in a consecutive manner. The efficiency improvement in photovoltaic devices can be achieved when upconverters are integrated since upconverters contribute to the generation of extra photons. Despite numerous experimental studies confirming the relationship, fundamental explanations for a real contribution of upconversion to photovoltaic efficiency are still in demand. In this respect, we suggest a new approach to visualize the upconversion event in terms of surface photovoltage (SPV) by virtue of Kelvin probe force microscopy (KPFM). One of the most conventional polymer semiconductors, poly(3-hexyl thiophene) (P3HT), is employed as a sensitizer to generate charge carriers by upconverted light. KPFM measurements reveal that the light upconversion enabled the formation of charge carriers in P3HT, resulting in large SPV of -54.9 mV. It confirms that the energy transfer from upconverters to P3HT can positively impact on the device performance in organic solar cells (OSCs).clos
Reduced graphene oxide wrapped coreâshell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability
Transparent conductive electrodes (TCEs) are widely used in a wide range of opticalâelectronic devices. Recently, metal nanowires (NWs), e.g. Ag and Cu, have drawn attention as promising flexible materials for TCEs. Although the study of coreâshell metal NWs, and the encapsulation/overcoating of the surface of single-metal NWs have separately been an object of focus in the literature, herein for the first time we simultaneously applied both strategies in the fabrication of highly stable AgâCu NW-based TCEs by the utilization of Ag nanoparticles covered with reduced graphene oxide (rGO). The incorporation of Ag nanoparticles by galvanic displacement reaction was shown to significantly increase the long term stability of the electrode. Upon comparison with a CuNW reference, our novel rGO/CuâAgNW-based TCEs unveiled remarkable opto-electrical properties, with a 3-fold sheet resistance decrease (from 29.8 Ω sqâ1 to 10.0 Ω sqâ1) and an impressive FOM value (139.4). No detrimental effect was noticed in the relatively high transmittance value (T = 77.6% at 550 nm) characteristic of CuNWs. In addition, our rGO/CuâAgNW-based TCEs exhibited outstanding thermal stability up to 20 days at 80 °C in air, as well as improved mechanical flexibility. The superior performance herein reported compared with both CuNWs and AgNWs, and with a current conventional ITO reference, is believed to highlight the great potential of these novel materials as promising alternatives in opticalâelectronic devices
Set7 is a H3K37 methyltransferase in Schizosaccharomyces pombe and is required for proper gametogenesis
Histone methylation by histone methyltransferases (HMTases) has a key role in transcriptional regulation. Discrepancies between the known HMTases and the histone lysine methylome suggest that HMTases remain to be identified. Here we report the discovery, characterization, and crystal structure of Schizosaccharomyces pombe Set7, an HMTase methylating the uncharted histone H3 lysine 37 (H3K37) mark. Set7 forms a dimer with its substrate-binding site structurally specific to K37, not the neighboring well-studied K36 mark. We also discovered that H3K37 methylation levels dramatically increase during gametogenesis. Set7 deletion mutant cells show defects in gametogenesis and produce the abnormal number of spores with aberrant morphology. S. pombe gametogenesis shares similarities with mammalian spermatogenesis. These findings extend our understanding of epigenetic regulation during gametogenesis and support a link between Set7, the epigenetic H3K37 methyl mark, and proper gametogenesis
Unlearned adaptive responses to heterospecific referential alarm calls in two bird species from separate evolutionary lineages
Abstract The interspecific responses to alarm signals may be based on unlearned mechanisms but research is often constrained by the difficulties in differentiating between unlearned and learned responses in natural situations. In a field study of two Paridae species, Parus minor and Sittiparus varius, who originated from a common ancestor 8 million years ago, we found a considerable degree of between-species overlap in acoustic properties of referential snake-alarm calls. Playback of these calls triggered unlearned adaptive fledging behavior in conspecific and heterospecific naive nestlings, suggesting a between-species overlap in the hypothetical unlearned neural templates involved in nestlingsâ reactions to alarm calls in both species. This suggests that similar calls and similar unlearned sensitivity might have been present in the common ancestor of the two species, and possibly in the ancestor of the whole family Paridae that originated 10â15 million years ago in Asian regions rich in snakes