77 research outputs found

    Evolution of H9N2 influenza viruses from domestic poultry in Mainland China

    Get PDF
    AbstractH9N2 viruses have circulated in domestic poultry in Mainland China since 1994, and an inactivated vaccine has been used in chickens to control the disease since 1998. The present study analyzed 27 H9N2 avian influenza viruses that were isolated from chickens and ducks from 1996 to 2002. Infection studies indicated that most of the viruses replicate efficiently but none of them is lethal for SPF chickens. However, these viruses exhibit different phenotypes of replication in a mouse model. Five viruses, including 4 early isolates and one 2000 isolate, are not able to replicate in mice; 14 viruses replicate to moderate titers in mouse lungs and cause less than 5% weight loss, while other 8 viruses could replicate to high titers in the lungs and 7 of them induce 10–20% weight loss of the mice on day 5 after inoculation. Most of the viruses isolated after 1996 are antigenically different from the vaccine strain that is currently used in China. Three viruses isolated in central China in 1998 are resistant to adamantanes. Phylogenetic analysis revealed that all of the viruses originated from CK/BJ/1/94-like virus and formed multiple genotypes through complicated reassortment with QA/HK/G1/97-, CK/HK/G9/97-, CK/SH/F/98-, and TY/WI/66-like viruses. This study is a description of the previously uncharacterized H9N2 avian influenza viruses recently circulating in chickens and ducks in Mainland China. Our findings suggest that urgent attention should be paid to the control of H9N2 influenza viruses in animals and to the human's influenza pandemic preparedness

    Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV), A/Hong Kong/1/68(H3N2) (HK-wt), was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans.</p> <p>Results</p> <p>To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth <it>in vitro </it>(mouse and canine cells) and <it>in vivo </it>(BALB/c mouse lungs) as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β) pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene) that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung alveolar and bronchiolar tissues relative to the corresponding L103F and I106M mutant.</p> <p>Conclusions</p> <p>The F103L and M106I NS1 mutations were adaptive genetic determinants of growth and virulence in both human and avian NS1 genes in the mouse model.</p

    Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus

    Get PDF
    Insulin-like growth factor-1 (IGF-1) is essential to hippocampal neurogenesis and the neuronal response to hypoxia/ischemia injury. IGF (IGF-1 and -2) signaling is mediated primarily by the type 1 IGF receptor (IGF-1R) and modulated by six high-affinity binding proteins (IGFBP) and the type 2 IGF receptor (IGF-2R), collectively termed IGF system proteins. Defining the precise cells that express each is essential to understanding their roles. With the exception of IGFBP-1, we found that mouse hippocampus expresses mRNA for each of these proteins during the first 2 weeks of postnatal life. Compared to postnatal day 14 (P14), mRNA abundance at P5 was higher for IGF-1, IGFBP-2, -3, and -5 (by 71%, 108%, 100%, and 98%, respectively), lower for IGF-2, IGF-2R, and IGFBP-6 (by 65%, 78%, and 44%, respectively), and unchanged for IGF-1R and IGFBP-4. Using laser capture microdissection (LCM), we found that granule neurons and pyramidal neurons exhibited identical patterns of expression of IGF-1, IGF-1R, IGF-2R, IGFBP-2, and -4, but did not express other IGF system genes. We then compared IGF system expression in mature granule neurons and their progenitors. Progenitors exhibited higher mRNA levels of IGF-1 and IGF-1R (by 130% and 86%, respectively), lower levels of IGF-2R (by 72%), and similar levels of IGFBP-4. Our data support a role for IGF in hippocampal neurogenesis and provide evidence that IGF actions are regulated within a defined in vivo milieu

    The effect of Shengmai injection in patients with coronary heart disease in real world and its personalized medicine research using machine learning techniques

    Get PDF
    Objective: Shengmai injection is a common treatment for coronary heart disease. The accurate dose regimen is important to maximize effectiveness and minimize adverse reactions. We aim to explore the effect of Shengmai injection in patients with coronary heart disease based on real-world data and establish a personalized medicine model using machine learning and deep learning techniques.Methods: 211 patients were enrolled. The length of hospital stay was used to explore the effect of Shengmai injection in a case-control study. We applied propensity score matching to reduce bias and Wilcoxon rank sum test to compare results between the experimental group and the control group. Important variables influencing the dose regimen of Shengmai injection were screened by XGBoost. A personalized medicine model of Shengmai injection was established by XGBoost selected from nine algorithm models. SHapley Additive exPlanations and confusion matrix were used to interpret the results clinically.Results: Patients using Shengmai injection had shorter length of hospital stay than those not using Shengmai injection (median 10.00 days vs. 11.00 days, p = 0.006). The personalized medicine model established via XGBoost shows accuracy = 0.81 and AUC = 0.87 in test cohort and accuracy = 0.84 and AUC = 0.84 in external verification. The important variables influencing the dose regimen of Shengmai injection include lipid-lowering drugs, platelet-lowering drugs, levels of GGT, hemoglobin, prealbumin, and cholesterol at admission. Finally, the personalized model shows precision = 75%, recall rate = 83% and F1-score = 79% for predicting 40 mg of Shengmai injection; and precision = 86%, recall rate = 79% and F1-score = 83% for predicting 60 mg of Shengmai injection.Conclusion: This study provides evidence supporting the clinical effectiveness of Shengmai injection, and established its personalized medicine model, which may help clinicians make better decisions

    Multifunctional Adaptive NS1 Mutations Are Selected upon Human Influenza Virus Evolution in the Mouse

    Get PDF
    The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2) (HK-wt) to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold) in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase). Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30) thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants), and protein production (6 of 12 mutants) in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution

    Selection of antigenically advanced variants of seasonal influenza viruses.

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.This work was supported by the Bill & Melinda Gates Foundation Global Health Grant OPPGH5383; National Institute of Allergy and Infectious Diseases (NIAID) Public Health Service research grants (USA); ERATO (Japan Science and Technology Agency); the Center for Research on Influenza Pathogenesis (CRIP) funded by the NIAID Contracts HHSN266200700010C and HHSN27 2201400008C; the Japan Initiative for Global Research Network on Infectious Diseases; Grants-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; Grants-in-Aid from the Ministry of Health, Labour and Welfare, Japan; grants from the Strategic Basic Research Program of the Japan Science and Technology Agency; and by the Advanced Research & Development Programs for Medical Innovation from the Japan Agency for Medical Research and Development (AMED). C.A.R. was supported by a University Research Fellowship from the Royal Society. The authors acknowledge a Netherlands Organisation for Scientific Research (NWO) VICI grant, European Union (EU) FP7 programs EMPERIE (223498) and ANTIGONE (278976); Human Frontier Science Program (HFSP) program grant P0050/2008; Wellcome 087982AIA; and NIH Director's Pioneer Award DP1-OD000490-01. D.F.B and D.J.S. acknowledge CamGrid, the University of Cambridge distributed computer system. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmicrobiol.2016.5

    Selection of antigenically advanced variants of seasonal influenza viruses

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent se

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses

    No full text
    Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon &beta; (IFN-&beta;) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i
    corecore