27 research outputs found

    Telomeres and Telomerase in Cardiovascular Diseases

    No full text
    Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition, low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging myocardium with telomere shortening and accumulation of senescent cells limits the tissue regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. In this review, we summarize the current understanding of telomeres and telomerase in the aging process and their association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting the telomere system in cardiovascular disease treatments

    Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells

    No full text
    Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT) chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs). To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA+) in this work. The short-circuit current density (Jsc) of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA) as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE) values in the wavelength range of 400–450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475–600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC

    Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells

    Get PDF
    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT: PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer

    Surveillance of upper respiratory infections using a new multiplex PCR assay compared to conventional methods during the influenza season in Taiwan

    No full text
    Objectives: To improve diagnosis as part of laboratory surveillance in Taiwan, influenza-like illness (ILI) surveillance was conducted using a new multiplex PCR assay (FilmArray) and the results compared to those of conventional methods The study was performed during the winter months. Methods: Throat swabs from patients with an ILI presenting to physicians in sentinel practices were collected during the 2016–2017 influenza season. Results: A total of 52 samples tested positive by FilmArray Respiratory Panel. Forty percent were influenza A virus, and subtype H3N2 virus was the major epidemic strain. However, nearly 60% of ILI cases seen at sentinel sites were caused by non-influenza pathogens. The results of the FilmArray assay and cell culture were identical, and this assay was more sensitive than a rapid influenza diagnostic test. Genetic analyses revealed new influenza A H3N2 variants belonging to a novel subclade 3C.2a2. Conclusions: The FilmArray assay facilitates urgent testing and laboratory surveillance for common viral and bacterial respiratory pathogens. This study demonstrated the use of a highly sensitive assay using clinical samples that is feasible for application worldwide. This may lead to an increased rate of diagnosis of viral infections and to improved patient outcomes, and in particular to a reduction in the overuse of antibiotics and antivirals

    TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity

    No full text
    Large cardiovascular outcome trials have reported favorable effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on heart failure. To study the potential mechanism of the SGLT2 inhibition in heart failure, we used the murine doxorubicin-induced cardiomyopathy model and identified the toll-like receptor 9 (TLR9), NAD-dependent deacetylase sirtuin-3 (SIRT3), and Beclin 1, acting in a complex together in response to empagliflozin treatment. The interactions and implications in mitochondrial function were evaluated with TLR9 deficient, SIRT3 deficient, Beclin 1 haplodeficient, and autophagy reporter mice and confirmed in a patient with SIRT3 point mutation and reduced enzymatic activity. The SGLT2 inhibitor, empagliflozin, protects the heart from doxorubicin cardiomyopathy in mice, by acting through a novel Beclin 1-toll-like receptor (TLR) 9-sirtuin-(SIRT) 3 axis. TLR9 and SIRT3 were both essential for the protective effects of empagliflozin. The dilated cardiomyopathy patient with SIRT3 point mutation and reduced enzymatic activity is associated with reduced TLR9 activation and the absence of mitochondrial responses in the heart after the SGLT2 inhibitor treatment. Our data indicate a dynamic communication between autophagy and Beclin 1-TLR9-SIRT3 complexes in the mitochondria in response to empagliflozin that may serve as a potential treatment strategy for heart failure

    The incidence and survival after in-hospital cardiopulmonary cerebral resuscitation in end-stage kidney disease patients: A nationwide population-based study.

    No full text
    BackgroundThis study analyzed the survival and protective predictors of in-hospital cardiopulmonary cerebral resuscitation (CPCR) to potentially help physicians create effective treatment plans for End-stage kidney disease (ESKD) patients.MethodsWe extracted the data of 7,116 ESKD patients who received their first in-hospital CPCR after initial dialysis between 2004 and 2012 from the National Health Insurance Research Database. The primary outcome was the survival rate during the first in-hospital CPCR. The secondary outcome was the median post-discharge survival.ResultsFrom 2004 through 2012, the incidence of in-hospital CPCR decreases from 3.97 to 3.67 events per 1,000 admission days (P for linear trend ConclusionThe incidence of in-hospital CPCR and the duration post-discharge among ESKD patients improved despite there being no significant difference in the survival rate of ESKD patients after CPCP. Either ICD or CRT-D implantation may be advisable for ESKD patients with a high risk of sudden cardiac death

    Comparison of Baseline versus Posttreatment Left Ventricular Ejection Fraction in Patients with Acute Decompensated Heart Failure for Predicting Cardiovascular Outcome: Implications from Single-Center Systolic Heart Failure Cohort.

    No full text
    The prognostic values of left ventricular ejection fraction (LVEF) during heart failure (HF) with acute decompensation or after optimal treatment have not been extensively studied. We hypothesized that posttreatment LVEF has superior predictive value for long-term prognosis than LVEF at admission does.In Protocol 1, 428 acute decompensated HF (ADHF) patients with LVEF ≤35% in a tertiary medical center were enrolled and followed for a mean period of 34.7 ± 10.8 months. The primary and secondary end points were all-cause mortality and HF readmission, respectively. In total, 86 deaths and 240 HF readmissions were recorded. The predictive values of baseline LVEF at admission and LVEF 6 months posttreatment were analyzed and compared. The posttreatment LVEFs were predictive for future events (P = 0.01 for all-cause mortality, P < 0.001 for HF readmission), but the baseline LVEFs were not. In Protocol 2, the outcomes of patients with improved LVEF (change of LVEF: ≥+10%), unchanged LVEF (change of LVEF: -10% to +10%), and reduced LVEF (change of LVEF: ≤-10%) were analyzed and compared. Improved LVEF occurred in 171 patients and was associated with a superior long-term prognosis among all groups (P = 0.02 for all-cause mortality, P < 0.001 for HF readmission). In Protocol 3, independent predictors of improved LVEF were analyzed, and baseline LV end-diastolic dimension (LVEDD) was identified as a powerful predictor in ADHF patients (P < 0.001).In patients with ADHF, posttreatment LVEF but not baseline LVEF had prognostic power. Improved LVEF was associated with superior long-term prognosis, and baseline LVEDD identified patients who were more likely to have improved LVEF. Therefore, baseline LVEF should not be considered a relevant prognosis factor in clinical practice for patients with ADHF

    Combining Phenylalanine and Leucine Levels Predicts 30-Day Mortality in Critically Ill Patients Better than Traditional Risk Factors with Multicenter Validation

    No full text
    In critically ill patients, risk scores are used; however, they do not provide information for nutritional intervention. This study combined the levels of phenylalanine and leucine amino acids (PLA) to improve 30-day mortality prediction in intensive care unit (ICU) patients and to see whether PLA could help interpret the nutritional phases of critical illness. We recruited 676 patients with APACHE II scores &ge; 15 or intubated due to respiratory failure in ICUs, including 537 and 139 patients in the initiation and validation (multicenter) cohorts, respectively. In the initiation cohort, phenylalanine &ge; 88.5 &mu;M (indicating metabolic disturbance) and leucine &lt; 68.9 &mu;M (indicating malnutrition) were associated with higher mortality rate. Based on different levels of phenylalanine and leucine, we developed PLA scores. In different models of multivariable analyses, PLA scores predicted 30-day mortality independent of traditional risk scores (p &lt; 0.001). PLA scores were then classified into low, intermediate, high, and very-high risk categories with observed mortality rates of 9.0%, 23.8%, 45.6%, and 81.8%, respectively. These findings were validated in the multicenter cohort. PLA scores predicted 30-day mortality better than APACHE II and NUTRIC scores and provide a basis for future studies to determine whether PLA-guided nutritional intervention improves the outcomes of patients in ICUs

    Cumulative percent survival free of HF readmission according to baseline LVEF (A), posttreatment LVEF (B), and LVEF change (C).

    No full text
    <p>The Kaplan–Meier survival analyses for the patients with HF divided into tertiles by posttreatment LVEF or LVEF change reveal significant differences between the groups in HF readmission (<i>P</i> < .001). However, HF readmission does not differ significantly between the groups according to the baseline LVEF tertiles.</p
    corecore