95 research outputs found

    Regularity of very weak solutions for elliptic equation of divergence form

    Get PDF
    AbstractIn this paper, we study the local regularity of very weak solution u∈Lloc1(Ω) of the elliptic equation Dj(aij(x)Diu)=0. Using the bootstrap argument and the difference quotient method, we obtain that if aij∈Cloc0,1(Ω), then u∈Wloc2,p(Ω) for any p<∞

    The Developing Blueberry Industry in China

    Get PDF
    The present situation of blueberry industry in China was summarized. The six main blueberry cultivation areas in China were reviewed and practical suggestions were made. Reference and guidance for water management of rabbiteye blueberry in Yangtze river basin was provided, and water physiological characteristics and water requirement of blueberry were also clarified so as to provide scientific management of blueberry. Effects of vinegar residue on soil physical and chemical properties, enzymatic activities, growth of blueberry, nutrient uptake, and fruit quality were studied. The effect of vinegar residue on the growth of blueberry and the mechanism revealed from the perspective of soil amelioration were also discussed from the results

    Holographic MIMO Communications with Arbitrary Surface Placements: Near-Field LoS Channel Model and Capacity Limit

    Full text link
    Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we try to implement a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of 1/dmn21/{{d}_{mn}^2}, 1/dmn41/{{d}_{mn}^4}, and 1/dmn61/{{d}_{mn}^6} over all transmit and receive antenna elements, where dmnd_{mn} indicates the distance between each transmit and receive elements. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.Comment: 30 pages, 8 figure

    Mean Field Game-based Waveform Precoding Design for Mobile Crowd Integrated Sensing, Communication, and Computation Systems

    Full text link
    Data collection and processing timely is crucial for mobile crowd integrated sensing, communication, and computation~(ISCC) systems with various applications such as smart home and connected cars, which requires numerous integrated sensing and communication~(ISAC) devices to sense the targets and offload the data to the base station~(BS) for further processing. However, as the number of ISAC devices growing, there exists intensive interactions among ISAC devices in the processes of data collection and processing since they share the common network resources. In this paper, we consider the environment sensing problem in the large-scale mobile crowd ISCC systems and propose an efficient waveform precoding design algorithm based on the mean field game~(MFG). Specifically, to handle the complex interactions among large-scale ISAC devices, we first utilize the MFG method to transform the influence from other ISAC devices into the mean field term and derive the Fokker-Planck-Kolmogorov equation, which model the evolution of the system state. Then, we derive the cost function based on the mean field term and reformulate the waveform precoding design problem. Next, we utilize the G-prox primal-dual hybrid gradient algorithm to solve the reformulated problem and analyze the computational complexity of the proposed algorithm. Finally, simulation results demonstrate that the proposed algorithm can solve the interactions among large-scale ISAC devices effectively in the ISCC process. In addition, compared with other baselines, the proposed waveform precoding design algorithm has advantages in improving communication performance and reducing cost function.Comment: 13 pages,9 figure

    Technological Evolution from RIS to Holographic MIMO

    Get PDF
    Multiple-input multiple-output (MIMO) techniques have been widely applied in current cellular networks. To meet the ever-increasing demands on spectral efficiency and network throughput, more and more antennas are equipped at the base station, forming the well-known concept of massive MIMO. However, traditional design with fully digital precoding architecture brings high power consumption and capital expenditure. Cost- and power-efficient solutions are being intensively investigated to address these issues. Among them, both reconfigurable intelligent surface (RIS) and holographic MIMO (HMIMO) stand out. In this chapter, we will focus on the ongoing paradigm shift from RIS to HMIMO, covering both topics in detail. A wide range of closely related topics, e.g., use cases, hardware architectures, channel modeling and estimation, RIS beamforming, HMIMO beamforming, performance analyses of spectral- and energy-efficiency, and challenges and outlook, will be covered to show their potential to be applied in the next-generation wireless networks as well as the rationales for the technological evolution from RIS to holographic MIMO

    Entomopathogenic Fungi on Hemiberlesia pitysophila

    Get PDF
    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial
    • …
    corecore