652 research outputs found
Convolutional Feature Masking for Joint Object and Stuff Segmentation
The topic of semantic segmentation has witnessed considerable progress due to
the powerful features learned by convolutional neural networks (CNNs). The
current leading approaches for semantic segmentation exploit shape information
by extracting CNN features from masked image regions. This strategy introduces
artificial boundaries on the images and may impact the quality of the extracted
features. Besides, the operations on the raw image domain require to compute
thousands of networks on a single image, which is time-consuming. In this
paper, we propose to exploit shape information via masking convolutional
features. The proposal segments (e.g., super-pixels) are treated as masks on
the convolutional feature maps. The CNN features of segments are directly
masked out from these maps and used to train classifiers for recognition. We
further propose a joint method to handle objects and "stuff" (e.g., grass, sky,
water) in the same framework. State-of-the-art results are demonstrated on
benchmarks of PASCAL VOC and new PASCAL-CONTEXT, with a compelling
computational speed.Comment: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
201
Towards High Performance Video Object Detection
There has been significant progresses for image object detection in recent
years. Nevertheless, video object detection has received little attention,
although it is more challenging and more important in practical scenarios.
Built upon the recent works, this work proposes a unified approach based on
the principle of multi-frame end-to-end learning of features and cross-frame
motion. Our approach extends prior works with three new techniques and steadily
pushes forward the performance envelope (speed-accuracy tradeoff), towards high
performance video object detection
Relation Networks for Object Detection
Although it is well believed for years that modeling relations between
objects would help object recognition, there has not been evidence that the
idea is working in the deep learning era. All state-of-the-art object detection
systems still rely on recognizing object instances individually, without
exploiting their relations during learning.
This work proposes an object relation module. It processes a set of objects
simultaneously through interaction between their appearance feature and
geometry, thus allowing modeling of their relations. It is lightweight and
in-place. It does not require additional supervision and is easy to embed in
existing networks. It is shown effective on improving object recognition and
duplicate removal steps in the modern object detection pipeline. It verifies
the efficacy of modeling object relations in CNN based detection. It gives rise
to the first fully end-to-end object detector
Flow-Guided Feature Aggregation for Video Object Detection
Extending state-of-the-art object detectors from image to video is
challenging. The accuracy of detection suffers from degenerated object
appearances in videos, e.g., motion blur, video defocus, rare poses, etc.
Existing work attempts to exploit temporal information on box level, but such
methods are not trained end-to-end. We present flow-guided feature aggregation,
an accurate and end-to-end learning framework for video object detection. It
leverages temporal coherence on feature level instead. It improves the
per-frame features by aggregation of nearby features along the motion paths,
and thus improves the video recognition accuracy. Our method significantly
improves upon strong single-frame baselines in ImageNet VID, especially for
more challenging fast moving objects. Our framework is principled, and on par
with the best engineered systems winning the ImageNet VID challenges 2016,
without additional bells-and-whistles. The proposed method, together with Deep
Feature Flow, powered the winning entry of ImageNet VID challenges 2017. The
code is available at
https://github.com/msracver/Flow-Guided-Feature-Aggregation
- …