Although it is well believed for years that modeling relations between
objects would help object recognition, there has not been evidence that the
idea is working in the deep learning era. All state-of-the-art object detection
systems still rely on recognizing object instances individually, without
exploiting their relations during learning.
This work proposes an object relation module. It processes a set of objects
simultaneously through interaction between their appearance feature and
geometry, thus allowing modeling of their relations. It is lightweight and
in-place. It does not require additional supervision and is easy to embed in
existing networks. It is shown effective on improving object recognition and
duplicate removal steps in the modern object detection pipeline. It verifies
the efficacy of modeling object relations in CNN based detection. It gives rise
to the first fully end-to-end object detector