73 research outputs found

    Observation of Quantized Hall Effect and Shubnikov-de Hass Oscillations in Highly Doped Bi2Se3: Evidence for Layered Transport of Bulk Carriers

    Get PDF
    Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass (SdH) oscillations accompanied by quantized Hall resistances (Rxy) in highly-doped n-type Bi2Se3 with bulk carrier concentrations of few 10^19 cm^-3. Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation. The quantized step size in 1/Rxy is found to scale with the sample thickness, and average ~e2/h per quintuple layer (QL). We show that the observed magnetotransport features do not come from the sample surface, but arise from the bulk of the sample acting as many parallel 2D electron systems to give a multilayered quantum Hall effect. Besides revealing a new electronic property of Bi2Se3, our finding also has important implications for electronic transport studies of topological insulator materials.Comment: accepted by Physical Review Letters (2012

    Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates

    Get PDF
    We demonstrate ambipolar graphene field effect transistors individually controlled by local metal side gates. The side gated field effect can have on/off ratio comparable with that of the global back gate, and can be tuned in a large range by the back gate and/or a second side gate. We also find that the side gated field effect is significantly stronger by electrically floating the back gate compared to grounding the back gate, consistent with the finding from electrostatic simulation.Comment: 4 pages, 3 figure

    Effect of oxygen plasma etching on graphene studied with Raman spectroscopy and electronic transport

    Get PDF
    We report a study of graphene and graphene field effect devices after exposure to a series of short pulses of oxygen plasma. We present data from Raman spectroscopy, back-gated field-effect and magneto-transport measurements. The intensity ratio between Raman "D" and "G" peaks, I(D)/I(G) (commonly used to characterize disorder in graphene) is observed to increase approximately linearly with the number (N(e)) of plasma etching pulses initially, but then decreases at higher Ne. We also discuss implications of our data for extracting graphene crystalline domain sizes from I(D)/I(G). At the highest Ne measured, the "2D" peak is found to be nearly suppressed while the "D" peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.Comment: 10 pages, 5 figure

    Topological insulator based spin valve devices: evidence for spin polarized transport of spin-momentum-locked topological surface states

    Full text link
    Spin-momentum helical locking is one of the most important properties of the nontrivial topological surface states (TSS) in 3D topological insulators (TI). It underlies the iconic topological protection (suppressing elastic backscattering) of TSS and is foundational to many exotic physics (eg., majorana fermions) and device applications (eg., spintronics) predicted for TIs. Based on this spin-momentum locking, a current flowing on the surface of a TI would be spin-polarized in a characteristic in-plane direction perpendicular to the current, and the spin-polarization would reverse when the current direction reverses. Observing such a spin-helical current in transport measurements is a major goal in TI research and applications. We report spin-dependent transport measurements in spin valve devices fabricated from exfoliated thin flakes of Bi2Se3 (a prototype 3D TI) with ferromagnetic (FM) Ni contacts. Applying an in-plane magnetic (B) field to polarize the Ni contacts along their easy axis, we observe an asymmetry in the hysteretic magnetoresistance (MR) between opposite B field directions. The polarity of the asymmetry in MR can be reversed by reversing the direction of the DC current. The observed asymmetric MR can be understood as a spin-valve effect between the current-induced spin polarization on the TI surface (due to spin-momentum-locking of TSS) and the spin-polarized ferromagnetic contacts. Our results provide a direct transport evidence for the spin helical current in TSS.Comment: 10 pages, 3 figure
    corecore