18 research outputs found
Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation
Bird strikes are a common, serious, and devastating event in aviation accidents, and multi-bird strikes are also frequently reported. A numerical multi-bird-strike simulation was performed to investigate the effect of flocking birds striking on engine blades. The smooth particle hydrodynamics (SPH) method was adopted in the hemispherical-ended bird substitute model, and the finite element method (FEM) with EOS state equation was adopted for the fan model as well. Impact analyses have been presented using different flocking birds and impact location distributions. A “0-2-1” supported rotor system dynamic model was established to study the effect of the multi-bird-strike impact forces on the rotor system. The results show that bird-strike severity is related to the impact location distribution, with blade-root impacts being the most dangerous. The small flocking bird strikes had little effect on the fan compared to the cases of medium flocking birds and the large single bird. The dynamic response of the fan to the small flocking birds was the same as without a bird strike, while the other cases changed the motion period and excited the rotor first-order vibration
Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation
Bird strikes are a common, serious, and devastating event in aviation accidents, and multi-bird strikes are also frequently reported. A numerical multi-bird-strike simulation was performed to investigate the effect of flocking birds striking on engine blades. The smooth particle hydrodynamics (SPH) method was adopted in the hemispherical-ended bird substitute model, and the finite element method (FEM) with EOS state equation was adopted for the fan model as well. Impact analyses have been presented using different flocking birds and impact location distributions. A “0-2-1” supported rotor system dynamic model was established to study the effect of the multi-bird-strike impact forces on the rotor system. The results show that bird-strike severity is related to the impact location distribution, with blade-root impacts being the most dangerous. The small flocking bird strikes had little effect on the fan compared to the cases of medium flocking birds and the large single bird. The dynamic response of the fan to the small flocking birds was the same as without a bird strike, while the other cases changed the motion period and excited the rotor first-order vibration
p53R2 as a novel prognostic biomarker in nasopharyngeal carcinoma
Abstract Background p53R2 is a target of p53 gene, which is essential for DNA repair, mitochondrial DNA synthesis, protection against oxidative stress, chromosomal instability, chronic inflammation and tumorigenesis. This study is aimed to investigate the expression of ribonucleotide reductase (RR) subunit p53R2 in nasopharyngeal carcinoma and its significance in the prognosis. Methods The expression levels of p53R2 in 201 patients with NPC were examined by immunohistochemical assay. The correlations of p53R2 expression and clinicopathological features of nasopharyngeal carcinoma patient were analysed by chi-square test. The Kaplan-Meier survival analysis and Cox multivariate regression model were used to analyze the prognostic significance of the patients with NPC. Results Immunohistochemical results showed that p53R2 was positively expressed in 92.5% (186/201) of nasopharyngeal carcinoma and the high expression rate was 38.3% (77/201). Further analysis observed that the negative correlation between expression of p53R2 and pT status had statistical significance (P < 0.05). Kaplan-Meier survival analysis found that the mean survival time of patients with high expression of p53R2 was 143.32 months, while the patients with low expression level of p53R2 was 121.63 months (P < 0.05). Cox regression analysis suggested that p53R2 protein expression could be used as an independent prognostic factor for nasopharyngeal carcinoma (P < 0.05). Conclusions This study drew a conclusion that p53R2 could be used as a prognostic biomarker indicative of the favorable outcome for patients with nasopharyngeal carcinoma
Overexpression of amplified in breast cancer 1 (AIB1) gene promotes lung adenocarcinoma aggressiveness in vitro and in vivo by upregulating C-X-C motif chemokine receptor 4
Abstract Background We previously found that overexpression of the gene known as amplified in breast cancer 1 (AIB1) was associated with lymph node metastasis and poor prognosis in patients with lung adenocarcinoma. However, the role of AIB1 in that malignancy remains unknown. The present study aimed to investigate the function of AIB1 in the process of lung adenocarcinoma cell metastasis. Methods A series of in vivo and in vitro assays were performed to elucidate the function of AIB1, while real-time PCR and Western blotting were utilized to identify the potential downstream targets of AIB1 in the process of lung adenocarcinoma metastasis. Rescue experiments and in vitro assays were performed to investigate whether the invasiveness of AIB1-induced lung adenocarcinoma was mediated by C-X-C motif chemokine receptor 4 (CXCR4). Results The ectopic overexpression of AIB1 in lung adenocarcinoma cells substantially enhanced cell migration and invasive abilities in vitro and tumor metastasis in vivo, whereas the depletion of AIB1 expression substantially inhibited lung adenocarcinoma cell migration and invasion. CXCR4 was identified as a potential downstream target of AIB1 in lung adenocarcinoma. The knockdown of AIB1 greatly reduced CXCR4 gene expression at both the transcription and protein levels, whereas the knockdown of CXCR4 in cells with AIB1 ectopic overexpression diminished AIB1-induced migration and invasion in vitro and tumor metastasis in vivo. Furthermore, we found a significant positive association between the expression of AIB1 and CXCR4 in lung adenocarcinoma patients (183 cases), and the co-overexpression of AIB1 and CXCR4 predicted the poorest prognosis. Conclusions These findings suggest that AIB1 promotes the aggressiveness of lung adenocarcinoma in vitro and in vivo by upregulating CXCR4 and that it might be usable as a novel prognostic marker and/or therapeutic target for this disease
Inhibitory Effects of Rhaponticin on Osteoclast Formation and Resorption by Targeting RANKL-Induced NFATc1 and ROS Activity
The extravagant osteoclast formation and resorption is the main cause of osteoporosis. Inhibiting the hyperactive osteoclastic resorption is considered as an efficient treatment for osteoporosis. Rhaponticin (RH) is a small molecule that has been reported to possess anti-inflammatory, anti-allergic, anti-fibrotic, and anti-diabetic activities. However, the influence of RH on osteoclasts differentiation and function is still unclear. To this end, an array of assays including receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL) induced osteoclastogenesis, tartrate-resistant acidic phosphatase (TRAcP) staining, immunofluorescence, and hydroxyapatite resorption were performed in this study. It was found that RH had significant anti-catabolic effects by inhibiting osteoclastogenesis and bone resorption without cytotoxicity. Mechanistically, the expression of NADPH oxidase 1 (Nox1) was found to be suppressed and antioxidant enzymes including catalase, superoxide dismutase 2 (SOD-2), and heme oxygenase-1(HO-1) were enhanced following RH treatment, suggesting RH exhibited antioxidant activity by reducing the generation of reactive oxygen species (ROS) as well as enhancing the depletion of ROS. In addition, MAPKs, NF-κB, and intracellular Ca2+ oscillation pathways were significantly inhibited by RH. These changes led to the deactivation of osteoclast master transcriptional factor-nuclear factor of activated T cells 1 (NFATc1), as examined by qPCR and Western blot assay, which led to the decreased expression of downstream integrin β3, c-Fos, cathepsin K, and Atp6v0d2. These results suggested that RH could effectively suppress RANKL-regulated osteoclast formation and bone resorption. Therefore, we propose that RH can represent a novel natural small molecule for the treatment of osteoporosis by inhibiting excessive osteoclast activity
Neo-N-confused Phlorins and Phlorinone: Rational Synthesis and Tunable Properties
By the acid-catalyzed [2 + 2] condensation,
an unprecedented neo-N-confused
phlorin (neo-NCphlorin <b>1</b>) was successfully synthesized.
By treating 1 with <i>N</i>-chlorosuccinimide, the corresponding
chloro-substituted neo-NCphlorin (1-Cl) was obtained. The oxidization
of 1 with FeCl<sub>3</sub> afforded the neo-N-confused phlorinone
(neo-NCphlorinone <b>2</b>), which bears a relatively coplanar
conformation, different from the highly distorted ones observed for <b>1</b> and <b>1-Cl</b>. Notably, <b>2</b> shows striking
long-wavelength absorption beyond 1300 nm upon addition of TBAF