13 research outputs found

    The whole chloroplast genome of Neomartinella yungshunensis (Brassicaceae), an unusual wild plant

    No full text
    Neomartinella yungshunensis (W. T. Wang) Al-Shehbaz 2000 is a kind of perennial herb usually distributed in Yongshun County, Xiangxi Tujia Miao Autonomous Prefecture, Hunan Province. It was the first time to report the complete chloroplast genome sequence of N. yungshunensis. The complete chloroplast genome was 152,597 bp in size, including a large single-copy (LSC) region of 83,145 bp, a small single copy region (SSC) of 17,400 bp, and a pair of reverse repeats (IR) of 26,026 bp. It contained 133 genes in the chloroplast genome, including 87 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The GC content of the chloroplast genome was 36.4%. The phylogenetic analysis showed that N. yungshunensis is closely related to Eutrema integrifolium (NC_049636)

    Integrated analysis of the transcriptome and metabolome of purple and green leaves of Tetrastigma hemsleyanum reveals gene expression patterns involved in anthocyanin biosynthesis.

    No full text
    To gain better insight into the regulatory networks of anthocyanin biosynthesis, an integrated analysis of the metabolome and transcriptome in purple and green leaves of Tetrastigma hemsleyanum was conducted. Transcript and metabolite profiles were archived by RNA-sequencing data analysis and LC-ESI-MS/MS, respectively. There were 209 metabolites and 4211 transcripts that were differentially expressed between purple and green leaves. Correlation tests of anthocyanin contents and transcriptional changes showed 141 significant correlations (Pearson correlation coefficient >0.8) between 16 compounds and 14 transcripts involved in the anthocyanin biosynthesis pathway. Some novel genes and metabolites were discovered as potential candidate targets for the improvement of anthocyanin content and superior cultivars

    Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis.

    No full text
    Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways

    Quantitative comparison of protein expression in the three developmental stages.

    No full text
    <p>(A) Hierarchical clustering analysis of protein expression in three growth stages of rice hull. (B) Protein expression correlations in three growth stages of rice hull. PK1, booting stage; PK2, flowering stage; PK3, milk-ripe stage.</p
    corecore