3 research outputs found

    Enhanced Thermoelectric Properties of Double-Filled CoSb<sub>3</sub> via High-Pressure Regulating

    No full text
    It has been discussed for a long time that synthetic pressure can effectively optimize thermoelectric properties. The beneficial effect of synthesis pressures on thermoelectric properties has been discussed for a long time. In this paper, it is theoretically and experimentally demonstrated that appropriate synthesis pressures can increase the figure of merit (ZT) through optimizing thermal transport and electronic transport properties. Indium and barium atoms double-filled CoSb<sub>3</sub> samples were prepared use high-pressure and high-temperature technique for half an hour. X-ray diffraction and some structure analysis were used to reveal the relationship between microstructures and thermoelectric properties. In<sub>0.15</sub>Ba<sub>0.35</sub>Co<sub>4</sub>Sb<sub>12</sub> samples were synthesized by different pressures; sample synthesized by 3 GPa has the best electrical transport properties, and sample synthesized by 2.5 GPa has the lowest thermal conductivity. The maximum ZT value of sample synthesized by 3.0 GPa reached 1.18

    DataSheet1_Enhanced non-linear optical properties of porphyrin-based polymers covalently functionalized with graphite phase carbon nitride.docx

    No full text
    In our work, a flurry of original porphyrin-based polymers covalently functionalized g-C3N4 nanohybrids were constructed and nominated as PPorx-g-C3N4 (x = 1, 2 and 3) through click chemistry between porphyrin-based polymers with alkyne end-groups [(PPorx-C≡CH (x = 1, 2 and 3)] and azide-functionalized graphitic carbon nitride (g-C3N4-N3). Due to the photoinduced electron transfer (PET) between porphyrin-based polymers [PPorx (x = 1, 2 and 3)] group and graphite phase carbon nitride (g-C3N4) group in PPorx-g-C3N4 nanohybrids, the PPorx-g-C3N4 nanohybrids exhibited better non-linear optical (NLO) performance than the corresponding PPorx-C≡CH and g-C3N4-N3. It found that the imaginary third-order susceptibility (Im [χ(3)]) value of the nanohybrids with different molecular weight (MW) of the pPorx group in the nanohybrids ranged from 2.5×103 to 7.0 × 103 g mol−1 was disparate. Quite interestingly, the Im [χ(3)] value of the nanohybrid with a pPorx group’s MW of 4.2 × 103 g mol−1 (PPor2-g-C3N4) was 1.47 × 10–10 esu, which exhibited the best NLO performance in methyl methacrylate (MMA) of all nanohybrids. The PPorx-g-C3N4 was dispersed in polymethyl methacrylate (PMMA) to prepare the composites PPorx-g-C3N4/PMMA since PMMA was widely used as an alternative to glass. PPor2-g-C3N4/PMMA showed the excellent NLO performance of all nanohybrids with the Im [χ(3)] value of 2.36 × 10–10 esu, limiting threshold of 1.71 J/cm2, minimum transmittance of 8% and dynamic range of 1.09 in PMMA, respectively. It suggested that PPorx-g-C3N4 nanohybrids were potential outstanding NLO materials.</p

    Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons

    No full text
    Surface plasmons, a unique property of metal nanoparticles, have been widely applied to enhance the performance of optical and electrical devices. In this study, a high quality zinc oxide (ZnO) thin film was grown on a quartz substrate by a radio frequency magnetron sputtering technique, and a metal–semiconductor–metal structured ultraviolet detector was prepared on the ZnO film. The responsivity of the photodetector was enhanced from 0.836 to 1.306 A/W by sputtering metal (Pt) nanoparticles on the surface of the device. In addition, the absorption of the ZnO thin film was enhanced partly in the ultraviolet band. It is revealed that Pt nanoparticles play a key role in enhancing the performance of the photodetectors, where surface plasma resonance occurs
    corecore