24 research outputs found

    Simultaneous induction of NKG2D and NKG2D ligand for promoting immune surveillance by IL-12 plus doxorubicin treatment

    Get PDF
    NKG2D (natural killer group 2, member D) and its ligands interaction in tumor microenvironment directs tumor infiltrating immune cells to recognize tumor cells, stimulate cytotoxic effector immune cells, and therefore eradicate tumor cells. IL-12, a cytokine produced by antigen presenting cells, has remarkable antitumor effect by activating innate and adaptive immunity. Doxorubicin, a commonly used chemotherapeutic agent also boosts the host antitumor immune response to cause tumor cell death. Our previous publication suggests that IL-12 plus doxorubicin enhances NKG2D function-dependent inhibition of tumor progression and promotes CD8+T cells infiltrating into tumors. The purpose of this study is to determine the underlying mechanism. Our study reveals a novel function of doxorubicin, which is to augment IL-12–induced NKG2D expression in CD8+T cells but not in NK or CD4+T cells. This observation was further validated by NK and CD8+T cell-depletion studies, in which only depletion of CD8+T cells abolished the expression of NKG2D in lymphocytes. The induced NKG2D expression in CD8+T cells is tightly associated with tumor-specific localization of CD8+T cells and improved antitumor efficacy. The IL-12 plus doxorubicin treatment-induced antitumor efficacy is also due to NKG2D ligand Rae-1 induction in tumors. Rae-1 induction in tumors is a long term effect in multiple tumor models, but not in normal tissues. A novel CD8+T cell direct contact dependent mechanism accounts for Rae-1 induction in vivo and in vitro, and CD80 is the receptor through which CD8+T cells interplay with tumor cells to upregulate Rae-1 on tumor cells. In summary, increased NKG2D expression in CD8+T cells in response to IL-12 plus doxorubicin was closely associated with tumor-specific localization of CD8+T cells and greater antitumor efficacy of the combined regimen than either agent alone. NKG2D ligand Rae-1 induction is triggered by the interaction of CD80 on tumor cells with tumor infiltrating CD+8 T cells

    WSX1 act as a tumor suppressor in hepatocellular carcinoma by downregulating neoplastic PD-L1 expression

    No full text
    The biological functions of WSX1, the alpha subunit of the interleukin-27 receptor, in non-immune cells are largely unknown. Here, the authors propose an IL-27-independent tumor suppressor role for WSX1 in hepatocytes, showing that WSX1 restricts tumor progression by down-regulating PD-L1 expression in tumour cells and maximizing T cell mediated antitumor immune responses

    A microfluidics-based method for isolation and visualization of cells based on receptor-ligand interactions.

    No full text
    Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interaction directly through visualization. In addition, all available assays require a large pool of cells; no assay capable of analyzing receptor-ligand interactions at the single-cell level is publicly available. Here, we describe a new microfluidic chip-based technique for analyzing and visualizing these interactions at the single-cell level. First, a protein is immobilized on a glass slide and a low-flow-rate pump is used to isolate cells that express receptors that bind to the immobilized ligand. Specifically, we demonstrate the efficacy of this technique by immobilizing biotin-conjugated FGL2 on an avidin-coated slide chip and passing a mixture of GFP-labeled wild-type T cells and RFP-labeled FcγRIIB-knockout T cells through the chip. Using automated scanning and counting, we found a large number of GFP+ T cells with binding activity but significantly fewer RFP+ FcγRIIB-knockout T cells. We further isolated T cells expressing a membrane-anchored, tumor-targeted IL-12 based on the receptor's affinity to vimentin to confirm the versatility of our technique. This protocol allows researchers to isolate receptor-expressing cells in about 4 hours for further downstream processing

    Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Get PDF
    Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), are capable of engendering human epidermal growth factor receptor 2 (Her2) positive tumor cells death. Using a high-performance liquid chromatography (HPLC) system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment

    The Cytoquest is capable of separating wt T cells from FcγRIIB based on FGL2 expression.

    No full text
    (A) Fluorescent microscopic imaging of FGL-2 coated slide chip after being loaded and washed with FcγRIIB KO T Cells (red) and wt T Cells (green) (B) Quantification of cells.</p

    Cytoquest schematic and workflow.

    No full text
    (A) Cellular level diagram of ligand coated slide chamber coated microfluidic slide chamber. Green cells express the appropriate receptor to the ligand and are captured onto the chamber. (B) Workflow diagram. (C) Abnova Cytoquest.</p

    The Cytoquest is capable of isolating ttIL12 T cells from wt T cells based on Vimentin expression.

    No full text
    (A) Fluorescent microscopic imaging of vimentin coated slide chip after being loaded and washed with ttIL12 T Cells (red) and wt T Cells (green) (B) Quantification of cells.</p
    corecore