2 research outputs found

    Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding

    No full text
    We have developed a kind of high-yield synthesis strategy for silver nanowires by a two-step injection polyol method. Silver nanowires and polyethylene oxide (PEO) (<i>M</i><sub>w</sub> = 900 000) were prepared in a homogeneous-coating ink. Wet composite films with different thicknesses were fabricated on a PET substrate by drawn-down rod-coating technology. Silver nanowires on PET substrates present a homogeneous distribution under the assistance of PEO. Then PEO was thermally removed in situ at a relatively low temperature attributed to its special thermal behavior under atmospheric conditions. As-prepared metallic nanowire films on PET substrates show excellent stability and a good combination of conductivity and light transmission. A layer of transparent poly­(ethersulfones) (PESs) was further coated on silver nanowire networks by the same coating method to prevent the shedding and corrosion of silver nanowires. Sandwich-structured flexible transparent films were obtained and displayed excellent electromagnetic interference (EMI) shielding effectiveness

    Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings

    No full text
    Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2–3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances
    corecore