37 research outputs found

    Phosphoproteins regulated by heat stress in rice leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (<it>Oryza sativa </it>L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.</p> <p>Methods</p> <p>Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.</p> <p>Results</p> <p>Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.</p> <p>Conclusion</p> <p>Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H<sup>+</sup>-ATPase, remains unknown.</p

    Phylogenetic characterization of genes encoding for glycoprotein 5 and membrane protein of PRRSV isolate HH08

    Get PDF
    A porcine reproductive and respiratory syndrome virus (PRRSV) was obtained from clinic samples. Genes 5 and 6 encoding for the viral glycoprotein 5 and a membrane protein of the PRRSV designated as HH08 were amplified by reverse transcription-PCR. These sequences were compared with reference sequences derived from different geographical locations. The results indicated that the virus belongs to the North American type rather than European. Comparative analyses of the genetic diversity between the PRRSV isolate HH08 and other Chinese as well as foreign reference strains of PRRSV were discussed based on the sequence comparison and the topology of phylogenetic trees constructed in this study

    A recombinant avian antibody against VP2 of infectious bursal disease virus protects chicken from viral infection

    Get PDF
    【Abstract】A stable cell-line was established that expressed the recombinant avian antibody (rAb) against the infectious bursal disease virus (IBDV). rAb exhibited neutralization activity to IBDV-B87 strain in DF1 cells. The minimum rAb concentration required for inhibition of the cytopathic effect (CPE) was 1.563 μg/mL. To test the efficacy of rAb, a 168-h cohabitation challenge experiment was performed to transmit the disease from the chickens challenged with vvIBDV (HLJ0504 strain) to three test groups of chickens, i.e. (1) chickens treated with rAb, (2) chickens treated with yolk antibody, and (3) non-treatment chickens. The survival rates of chickens treated with rAb, yolk antibody and without treatment were 73%, 67% and 20%, respectively. Another batch of chickens was challenged with IBDV (BC6/85 strain) and then injected with rAb (1.0 mg/kg) 6, 24 and 36 h post-challenge. Non-treatment chickens had 100% morbidity, whereas those administered with rAb exhibited only 20% morbidity. Morbidity was evaluated using clinical indicators and bursal histopathological section. This study provides a new approach to treating IBDV and the rAb represents a promising candidate for this IBDV therapy.This research was supported by Heilongjiang province project of applied technology research and development (2013GC13C105) and The National Natural Science Fund biologic science base improve program of research training and capacity (J1210069/J0124)

    CDK5-dependent BAG3 degradation modulates synaptic protein turnover

    Get PDF
    阿尔茨海默病(AD)是严重威胁人类健康的重大神经系统疾病,AD的发生发展与衰老密切相关,目前临床治疗方法十分有限。因此迫切需要从AD致病早期入手,发现和鉴定导致AD神经功能紊乱的机制和靶点,为AD的早期防治提供基础。张杰教授及其团队从高通量磷酸化蛋白质组学入手,系统研究了CDK5在神经细胞中的磷酸化底物,鉴定出了在蛋白质量控制中发挥重要功能的BAG3蛋白是CDK5的全新底物。课题组从磷酸化蛋白质组学入手,发现和阐明了细胞周期蛋白激酶5(CDK5)通过调控BAG3在维持突触蛋白水平调控中的作用机制,及其在阿尔茨海默病(AD)发生发展中的机理。 该研究是多个团队历时8年合作完成的,香港中文大学的周熙文教授、美国匹兹堡大学的Karl Herrup教授、美国Sanford-Burnham研究所的许华曦教授、美国梅奥医学中心的卜国军教授,厦门大学医学院的文磊教授、张云武教授、赵颖俊教授、薛茂强教授,军事医学科学院的袁增强教授等都参与了该工作。 厦门大学医学院2012级博士生周杰超等为文章的第一作者,张杰教授为通讯作者。Background Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer’s disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were re-examined in search for candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed. Methods Quantitative phospho-proteomics and bioinformatics analyses were performed to identify top-ranked candidates. A series of biochemical assays were used to investigate the associated regulatory signaling networks. Histological, electrochemical and behavioral assays were performed in conditional knockout, shRNA-mediated knockdown and AD-related mice models to evaluate its relevance to synaptic homeostasis and functions. Results Among candidates with known implications in synaptic modulations, BCL2-associated athanogene-3 (BAG3) ranked the highest. CDK5-mediated phosphorylation on Ser297/Ser291 (Mouse/Human) destabilized BAG3. Loss of BAG3 unleashed the selective protein degradative function of the HSP70 machinery. In neurons, this resulted in enhanced degradation of a number of glutamatergic synaptic proteins. Conditional neuronal knockout of Bag3 in vivo led to impairment of learning and memory functions. In human AD and related-mouse models, aberrant CDK5-mediated loss of BAG3 yielded similar effects on synaptic homeostasis. Detrimental effects of BAG3 loss on learning and memory functions were confirmed in these mice, and such were reversed by ectopic BAG3 re-expression. Conclusions Our results highlight that neuronal CDK5-BAG3-HSP70 signaling axis plays a critical role in modulating synaptic homeostasis. Dysregulation of the signaling pathway directly contributes to synaptic dysfunction and AD pathogenesis.This work was supported by the National Science Foundation in China (Grant: 31571055, 81522016, 81271421 to J.Z.; 81801337 to L.L; 81774377 and 81373999 to L.W.); Fundamental Research Funds for the Central Universities of China-Xiamen University (Grant: 20720150062, 20720180049 and 20720160075 to J.Z.); Fundamental Research Funds for Fujian Province University Leading Talents (Grant JAT170003 to L.L); Hong Kong Research Grants Council (HKUST12/CRF/13G, GRF660813, GRF16101315, AoE/M-05/12 to K.H.; GRF16103317, GRF16100718 and GRF16100219 to H.-M,C.); Offices of Provost, VPRG and Dean of Science, HKUST (VPRGO12SC02 to K.H.); Chinese University of Hong Kong (CUHK) Improvement on Competitiveness in Hiring New Faculty Funding Scheme (Ref. 133), CUHK Faculty Startup Fund and Alzheimer’s Association Research Fellowship (AARF-17-531566) to H.-M, C. 该研究受到了国家自然科学基金、厦门大学校长基金、福建省卫生教育联合攻关基金等的资助

    Design and Study of Physical and Mechanical Properties of Concrete Based on Ferrochrome Slag and Its Mechanism Analysis

    No full text
    In this study, high-carbon ferrochrome slag powder produced by grinding was used to replace different proportions of cement, and the effect of the amount of ferrochrome slag powder on the physical and mechanical properties of ferrochrome-slag-cement composites was analyzed. Water-cooled ferrochrome slag with a particle size of 5 mm was used to completely replace coarse aggregate to prepare ferrochrome-slag-based concretes. The microstructure of ferrochrome-slag-cement composites was analyzed by X-ray diffraction, scanning electron microscopy, and thermogravimetry–differential scanning calorimetry analysis. The compressive strength, water absorption, and aggregate–slurry interface bonding properties of ferrochrome-slag-based concrete were studied. The results demonstrate that a ferrochrome slag powder amount of 15% leads to the highest performance of ferrochrome-slag-cement composite material, and the fluidity ratio of ferrochrome-slag-cement mortar is 103, higher than reference samples. Furthermore, the compressive strengths of ferrochrome slag concretes are 15.8% and 3.6% higher than conventional concrete, and the water absorption of ferrochrome slag low-carbon concrete is better than that of conventional concrete. The interface bonding structure between concrete aggregate and slurry was optimized. This research can provide a reference for studying the application of ferrochrome slag, both the feasibility of high-carbon ferrochrome slag powder as supplementary cementitious material and the application of ferrochrome slag as concrete aggregate, and it can help to achieve the purpose of saving energy and reducing carbon emissions

    Cdk5 levels oscillate during the neuronal cell cycle: Cdh1 Ubiquitination triggers proteosome-dependent degradation during S-phase

    No full text
    When cell cycle re-activation occurs in post-mitotic neurons it places them at increased risk for death. The cell cycle/cell death association has been reported in many neurodegenerative diseases including Alzheimer disease (AD), yet the mechanisms by which a normal neuron suppresses the cycle remain largely unknown. Recently, our laboratory has shown that Cdk5 (cyclin-dependent kinase 5) is a key player in this protective function. When a neuron is under stress, Cdk5 is transported to the cytoplasm; this eliminates its cell cycle suppression activity and the neuron re-enters S-phase. In the current study we show that a similar principle applies during a normal cell cycle.Whena neuronal cell enters S phase, Cdk5 is transported to the cytoplasm where it is ubiquitinated by the E3 ligase APC-Cdh1. Ubiquitinated Cdk5 is then rapidly degraded by the proteasome. The ubiquitination site of Cdk5 appears to be in the p35 binding area; in the presence of high levels of p35, the ubiquitination of Cdk5 was blocked, and the degradation in S phase was attenuated. The data suggest an unsuspected role for Cdk5 during the progression of a normal cell cycle and offer new pharmaceutical targets for regulating neuronal cell cycling and cell death. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc

    Coupling Relationship between Ecosystem Service Value and Socioeconomic Development in the Qinba Mountains, China

    No full text
    The degree of coordination between ecosystem services and the level of socioeconomic development has essential implications for regional sustainability. The coordinated development of ecology and economy is a major theoretical and practical problem for the Qinba Mountains, which is once one of the 14 contiguous destitute areas in China. Based on the land use and cover change (LUCC) data interpreted by medium-resolution remote sensing images, this study adopted the modified equivalent factor method to calculate ecosystem service value (ESV) and its temporal and spatial variation in the Qinba Mountains. A comprehensive index system was constructed to measure the socioeconomic development level and to reveal the coupling relationship between the ESV and socioeconomic development. The results show that: (1) for 2000–2015, the ESV in these areas was increasing, the proportion of forest ESV was the largest, and it increased significantly. (2) The level of socioeconomic development was constantly improving, and the differences within the region were gradually emerging. (3) Except for the Hantai District, which has been in a highly uncoordinated state, the degree of coordination between ESV and socioeconomic development has improved year by year, and most counties were in a state of medium coordination, or above. The results contribute to a scientific basis for decision making regarding ecological environmental protection and green economic development in the Qinba Mountains, and have positive significance for promoting the construction of ecological civilization and sustainable development in the study area

    DIAPH1 Is Upregulated and Inhibits Cell Apoptosis through ATR/p53/Caspase-3 Signaling Pathway in Laryngeal Squamous Cell Carcinoma

    No full text
    Cancer bioinformatics has been used to screen possible key cancer genes and pathways. Here, through bioinformatics analysis, we found that high expression of diaphanous related formin 1 (DIAPH1) was associated with poor overall survival in head and neck squamous cell carcinoma and laryngeal squamous cell carcinoma (LSCC). The effect of DIAPH1 in LSCC has not been previously investigated. Therefore, we evaluated the expression, function, and molecular mechanisms of DIAPH1 in LSCC. Immunohistochemistry and western blot analysis confirmed the significant upregulation of DIAPH1 in LSCC. We used DIAPH1 RNA interference to construct two DIAPH1-knockdown LSCC cell lines, AMC-HN-8 and FD-LSC-1, and validated the knockdown efficiency. Flow cytometry data showed that DIAPH1 inhibited apoptosis. Further, western blot analysis revealed that DIAPH1 knockdown increased the protein levels of ATR, p-p53, Bax, and cleaved caspase-3, -8, and -9. Thus, DIAPH1 is upregulated in LSCC and may act as an oncogene by inhibiting apoptosis through the ATR/p53/caspase-3 pathway in LSCC cells
    corecore