2,198 research outputs found

    Prenatal Diagnosis of Pulmonary Sequestration by Ultrasound and Magnetic Resonance Imaging

    Get PDF
    A 36-year-old multigravida, G2P1, underwent routine ultrasound scan at 22+1 weeks of gestation, which revealed a single normally growing fetus with left intrathoracic mass and left displacement of the cardiac apex. The left intrathoracic wedge-shaped hyperechogenic mass, measuring 32 Ă— 25 mm in size, was situated at the lower portion of the left lung. A combination of color and power Doppler ultrasound allowed visualization of a vessel arising from the descending aorta, which supplied the mass. The diagnosis of extralobar pulmonary sequestration was made. Magnetic resonance imaging (MRI) was also performed and revealed a well-defined mass with homogeneous high-signal intensity when compared with normal lung tissue in the left upper lung field, which was compatible with pulmonary sequestration. The pulmonary mass was followed up by color and power Doppler every 2 weeks. The peak velocity of 11.85 cm/sec and the diameter of the feeding artery of 1.19 mm gradually decreased and disappeared 8 weeks later. The intrathoracic mass disappeared 10 weeks later at 32+1 gestational weeks. Repeat MRI also revealed spontaneous regression of the mass in favor of resorption of sequestration. The fetus was delivered at 38+1 gestational weeks. A male newborn weighing 2,520 g was spontaneously delivered with an Apgar score of 8 at 1 minute and 9 at 5 minutes. In our patient, it is suggested that progressive decreases in the peak velocity of the feeding vessel heralded the spontaneous regression of pulmonary sequestration not associated with hydrops/hydrothorax

    Isostructural Phase Transition of TiN Under High Pressure

    Full text link
    In situ high-pressure energy dispersive x-ray diffraction experiments on polycrystalline powder TiN with NaCl-type structure have been conducted with the pressure up to 30.1 GPa by using the diamond anvil cell instrument with synchrotron radiation at room tempearture. The experimental results suggested that an isostructural phase transition might exist at about 7 GPa as revealed by the discontinuity of V/V0 with pressure.Comment: submitte

    Dynamic diffusion tensor imaging reveals structural changes in the bilateral pyramidal tracts after brain stem hemorrhage in rats

    Get PDF
    Background and Purpose: Few studies have concentrated on pyramidal tract (PY) changes after brain stem hemorrhage (BSH). In this study, we used a diffusion tensor imaging (DTI) technique and histologic identification to investigate longitudinal PY changes on both the contralateral and ipsilateral sides after experimental BSH. Methods: BSH was induced in 61 Sprague-Dawley rats by infusing 30 μl of autogenous tail blood into each rat’s right pons. DTI and motor function examinations were performed repeatedly on days 1, 3, 7, 14, and 28 after surgery. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were measured in the bilateral PYs. The axon and myelin injury in the PY were evaluated by histologic study. Results: As compared with normal controls, the bilateral PYs in rats with induced BSH showed an early decrease and a late increase in fractional anisotropy and an early increase and a late decrease in mean diffusivity. A progressive decrease in axial diffusivity with dramatic axon loss from day 1 to day 28 after BSH was found bilaterally. The bilateral PYs showed an early increase and a late decrease in radial diffusivity. Early myelin injury and late repair were also detected pathologically in the bilateral PYs of rats with BSH. Thus, the early motor function deficits of rats with BSH began to improve on day 14 and had almost completely disappeared by day 28. Conclusions: DTI revealed dynamic changes in the bilateral PYs after BSH, which was confirmed by histologic findings and which correlated with motor function alteration. These findings support the idea that quantitative DTI can track structural changes in the bilateral PYs and that DTI may serve as a noninvasive tool to predict the prognoses of patients with BSH

    Comparative transcriptome and metabolome profiles of the leaf and fruits of a Xianjinfeng litchi budding mutant and its mother plant

    Get PDF
    Background: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant.Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis.Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant’s fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis.Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield

    Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    Get PDF
    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products

    PRL3-zumab, a first-in-class humanized antibody for cancer therapy

    Get PDF
    Novel, tumor-specific drugs are urgently needed for a breakthrough in cancer therapy. Herein, we generated a first-in-class humanized antibody (PRL3-zumab) against PRL-3, an intracellular tumor-associated phosphatase upregulated in multiple human cancers, for unconventional cancer immunotherapies. We focused on gastric cancer (GC), wherein elevated PRL-3 mRNA levels significantly correlated with shortened overall survival of GC patients. PRL-3 protein was overexpressed in 85% of fresh-frozen clinical gastric tumor samples examined but not in patient-matched normal gastric tissues. Using human GC cell lines, we demonstrated that PRL3-zumab specifically blocked PRL-3(+), but not PRL-3(–), orthotopic gastric tumors. In this setting, PRL3-zumab had better therapeutic efficacy as a monotherapy, rather than simultaneous combination with 5-fluorouracil or 5-fluorouracil alone. PRL3-zumab could also prevent PRL-3(+) tumor recurrence. Mechanistically, we found that intracellular PRL-3 antigens could be externalized to become “extracellular oncotargets” that serve as bait for PRL3-zumab binding to potentially bridge and recruit immunocytes into tumor microenvironments for killing effects on cancer cells. In summary, our results document a comprehensive cancer therapeutic approach to specific antibody-targeted therapy against the PRL-3 oncotarget as a case study for developing antibodies against other intracellular targets in drug discovery
    • …
    corecore