375 research outputs found

    Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization

    Get PDF
    NMDA receptor-dependent synaptic modifications, such as long-term potentiation (LTP) and long-term depression (LTD), are essential for brain development and function. LTD occurs mainly by the removal of AMPA receptors from the postsynaptic membrane, but the underlying molecular mechanisms remain unclear. Here, we show that activation of caspase-3 via mitochondria is required for LTD and AMPA receptor internalization in hippocampal neurons. LTD and AMPA receptor internalization are blocked by peptide inhibitors of caspase-3 and -9. In hippocampal slices from caspase-3 knockout mice, LTD is abolished whereas LTP remains normal. LTD is also prevented by overexpression of the anti-apoptotic proteins XIAP or Bcl-xL, and by a mutant Akt1 protein that is resistant to caspase-3 proteolysis. NMDA receptor stimulation that induces LTD transiently activates caspase-3 in dendrites, without causing cell death. These data indicate an unexpected causal link between the molecular mechanisms of apoptosis and LTD.National Institutes of Health (U.S.) (Fellowship F32-NS046126)National Institutes of Health (U.S.). Intramural Research ProgramNational Institute of Mental Health (U.S.

    Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis

    Full text link
    Chinese Ministry of Science and Technology [2009CB522205, 2012CB945104]; National Science Foundation of China [81170120, 31090363]; Beijing Nova Program [Z121107002512041]Background: Macrophages, the key component of the tumor microenvironment, are differentiated mononuclear phagocyte lineage cells that are characterized by specific phenotypic characteristics that have been implicated in tumor growth, angiogenesis, and invasion. CX3CR1, the chemoattractant cytokine CX3CL1 receptor, plays an important role in modulating inflammatory responses, including monocyte homeostasis and macrophage phenotype and function. However, the role of CX3CR1 in the regulation of the tumor inflammatory microenvironment is not fully understood. Methods: Using in vivo hepatic metastasis model, human colon carcinoma specimens, immunohistochemical staining, TUNEL staining, flow cytometry analysis, Western blotting assay and co-culture in three-dimensional peptide gel, we determined the effects of CX3CR1 on angiogenic macrophage survival and tumor metastasis. Results: In this study, we found that CX3CR1 was expressed in human colon carcinomas in a histologic grade-and stage-dependent manner, and CX3CR1 upregulation in TAMs was correlated with poor prognosis. Furthermore, we showed that in a microenvironment lacking CX3CR1, the liver metastasis of colon cancer cells was significantly inhibited. The underlying mechanism is associated with decrease accumulation of angiogenic macrophages that can be partly attributed to increased apoptosis in the tumor microenvironment, thus leading to impaired tumor angiogenesis in the liver and suppressed tumor metastasis. Conclusions: Our results suggest a role of CX3CR1 in angiogenic macrophage survival in the tumor microenvironment contributing to tumor metastasis

    Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids

    Get PDF
    BackgroundOvarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC.MethodsWe acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups.ResultsWe got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax.ConclusionThrough the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy

    Effectiveness Study of Moxibustion on Pain Relief in Primary Dysmenorrhea: Study Protocol of a Randomized Controlled Trial

    Get PDF
    Dysmenorrhea is a prevalent problem in menstruating women. As a nonpharmacologic and free of relevant side effects intervention, moxibustion is considered as a safe treatment and has long been recommended for dysmenorrhea in China. However, the exact effects of moxibustion in PD have not been fully understood. Therefore we designed this random clinical trial aiming to (1) investigate whether moxibustion is safe and effective for pain relief in primary dysmenorrhea when compared to conventional pain-killers and (2) assess the acceptability and side effects associated with moxibustion. The results of this trial will contribute to a better understanding of the different effects of moxibustion in pain relief in primary dysmenorrhea when compared to conventional pharmacologic pain treatment

    Effects of Tai Chi versus Proprioception Exercise Program on Neuromuscular Function of the Ankle in Elderly People: A Randomized Controlled Trial

    Get PDF
    Background. Tai Chi is a traditional Chinese medicine exercise used for improving neuromuscular function. This study aimed to investigate the effects of Tai Chi versus proprioception exercise program on neuromuscular function of the ankle in elderly people. Methods. Sixty elderly subjects were randomly allocated into three groups of 20 subjects per group. For 16 consecutive weeks, subjects participated in Tai Chi, proprioception exercise, or no structured exercise. Primary outcome measures included joint position sense and muscle strength of ankle. Subjects completed a satisfaction questionnaire upon study completion in Tai Chi and proprioception groups. Results. (1) Both Tai Chi group and proprioception exercise group were significantly better than control group in joint position sense of ankle, and there were no significant differences in joint position sense of ankle between TC group and PE group. (2) There were no significant differences in muscle strength of ankle among groups. (3) Subjects expressed more satisfaction with Tai Chi than with proprioception exercise program. Conclusions. None of the outcome measures on neuromuscular function at the ankle showed significant change posttraining in the two structured exercise groups. However, the subjects expressed more interest in and satisfaction with Tai Chi than proprioception exercise

    Diverse Effects of the NTCP p.Ser267Phe Variant on Disease Progression During Chronic HBV Infection and on HBV preS1 Variability

    Get PDF
    The sodium taurocholate co-transporting polypeptide (NTCP) acts as a cellular receptor for the hepatitis B virus (HBV) infection on host hepatocytes. We aim to investigate how the NTCP p.Ser267Phe variant affects HBV-related disease progression and analyze viral genomic variability under a host genetic background carrying the p.Ser267Phe variant. A total of 3187 chronic hepatitis B (CHB) patients were enrolled and genotyped for the p.Ser267Phe variant. The variant's association with disease progression was evaluated by logistic regression analysis. We also enrolled 83 treatment-naive CHB patients to analyze the variability of the HBV preS1 region. The frequency of the NTCP p.Ser267Phe variant was significantly lower in patients diagnosed with acute-on-chronic liver failure [OR (95% CI) = 0.33 (0.18–0.58), P = 1.34 × 10−4], cirrhosis [OR (95% CI) = 0.47 (0.31–0.72), P = 4.04 × 10−4], and hepatocellular carcinoma [OR (95% CI) = 0.54 (0.34–0.86), P = 9.83 × 10−3] as compared with CHB controls under the additive model after adjustment. Furthermore, the percentage of amino acid mutations in HBV preS1 region was significantly higher in the NTCP p.Ser267Phe heterozygote group than in the NTCP wild type homozygote group (P < 0.05). We herein demonstrate that the NTCP p.Ser267Phe variant is a protective factor reducing CHB patient risk for liver failure, cirrhosis, and hepatocellular carcinoma. A host genetic background carrying NTCP p.Ser267Phe exerts selective pressure on the virus, leading to more variability

    Calibration of the Timing Performance of GECAM-C

    Full text link
    As a new member of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) after GECAM-A and GECAM-B, GECAM-C (originally called HEBS), which was launched on board the SATech-01 satellite on July 27, 2022, aims to monitor and localize X-ray and gamma-ray transients from \sim 6 keV to 6 MeV. GECAM-C utilizes a similar design to GECAM but operates in a more complex orbital environment. In this work, we utilize the secondary particles simultaneously produced by the cosmic-ray events on orbit and recorded by multiple detectors, to calibrate the relative timing accuracy between all detectors of GECAM-C. We find the result is 0.1 μs\mu \rm s, which is the highest time resolution among all GRB detectors ever flown and very helpful in timing analyses such as minimum variable timescale and spectral lags, as well as in time delay localization. Besides, we calibrate the absolute time accuracy using the one-year Crab pulsar data observed by GECAM-C and Fermi/GBM, as well as GECAM-C and GECAM-B. The results are 2.02±2.26 μs2.02\pm 2.26\ \mu \rm s and 5.82±3.59 μs5.82\pm 3.59\ \mu \rm s, respectively. Finally, we investigate the spectral lag between the different energy bands of Crab pulsar observed by GECAM and GBM, which is 0.2 μs keV1\sim -0.2\ {\rm \mu s\ keV^{-1}}.Comment: submitte
    corecore