7,978 research outputs found

    Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster?

    Get PDF
    Distinct from normal differentiated tissues, cancer cells reprogram nutrient uptake and utilization to accommodate their elevated demands for biosynthesis and energy production. A hallmark of these types of reprogramming is the increased utilization of, and dependency on glutamine, a nonessential amino acid, for cancer cell growth and survival. It is well-accepted that glutamine is a versatile biosynthetic substrate in cancer cells beyond its role as a proteinogenic amino acid. In addition, accumulating evidence suggests that glutamine metabolism is regulated by many factors, including tumor origin, oncogene/tumor suppressor status, epigenetic alternations and tumor microenvironment. However, despite the emerging understanding of why cancer cells depend on glutamine for growth and survival, the contribution of glutamine metabolism to tumor progression under physiological conditions is still under investigation, partially because the level of glutamine in the tumor environment is often found low. Since targeting glutamine acquisition and utilization has been proposed to be a new therapeutic strategy in cancer, it is central to understand how tumor cells respond and adapt to glutamine starvation for optimized therapeutic intervention. In this review, we first summarize the diverse usage of glutamine to support cancer cell growth and survival, and then focus our discussion on the influence of other nutrients on cancer cell adaptation to glutamine starvation as well as its implication in cancer therapy

    Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis

    Get PDF
    © 2016 Elsevier Ltd Photovoltaic-thermoelectric (PV-TE) hybrid system is one typical electrical production based on the solar wide-band spectral absorption. However the PV-TE system appears to be economically unfeasible owing to the significantly higher cost and lower power output. In order to overcome this disadvantage, a novel PV-TE system based on the flat plate micro-channel heat pipe was proposed in this paper. The mathematic model was built and the performance under different ambient conditions was analyzed. In addition, the annual performance and the preliminary economic analysis of the new PV-TE system was also made to compare to the conventional PV system. The results showed that the new PV-TE has a higher electrical output and economic performance

    Numerical evaluation of a two loop diagram in the cutoff regularization

    Get PDF
    The sunset diagram of λϕ4\lambda\phi^4 theory is evaluated numerically in cutoff scheme and a nonzero finite term (in accordance with dimensional regularization (DR) result) is found in contrast to published calculations. This finding dramatically reduces the critical couplings for symmetry breaking in the two loop effective potential discussed in our previous work.Comment: 6 pages, revtex, to appear in Comm. Theor. Phy

    Dynamic simulations of water at constant chemical potential

    Get PDF
    The grand molecular dynamics (GMD) method has been extended and applied to examine the density dependence of the chemical potential of a three-site water model. The method couples a classical system to a chemical potential reservoir of particles via an ansatz Lagrangian. Equilibrium properties such as structure and thermodynamics, as well as dynamic properties such as time correlations and diffusion constants, in open systems at a constant chemical potential, are preserved with this method. The average number of molecules converges in a reasonable amount of computational effort and provides a way to estimate the chemical potential of a given model force field
    • …
    corecore