6,164 research outputs found

    Quantum states of a binary mixture of spinor Bose-Einstein condensates

    Full text link
    We study the structure of quantum states for a binary mixture of spin-1 atomic Bose-Einstein condensates. In contrast to collision between identical bosons, the s-wave scattering channel between inter-species does not conform to a fixed symmetry. The spin-dependent Hamiltonian thus contains non-commuting terms, making the exact eigenstates more challenging to obtain because they now depend more generally on both the intra- and inter-species interactions. We discuss two limiting cases, where the spin-dependent Hamiltonian reduces respectively to sums of commuting operators. All eigenstates can then be directly constructed, and they are independent of the detailed interaction parameters.Comment: 5 pages, no figure

    Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes

    Full text link
    Proximity effect on field-effect characteristic (FEC) in double-wall carbon nanotubes (DWCNTs) is investigated. In a semiconductor-metal (S-M) DWCNT, the penetration of electron wavefunctions in the metallic shell to the semiconducting shell turns the original semiconducting tube into a metal with a non-zero local density of states at the Fermi level. By using a two-band tight-binding model on a ladder of two legs, it is demonstrated that anomalous FEC observed in so-called S-M type DWCNTs can be fully understood by the proximity effect of metallic phases.Comment: 4 pages, 4 figure

    Atomic number fluctuations in a mixture of two spinor condensates

    Full text link
    We study particle number fluctuations in the quantum ground states of a mixture of two spin-1 atomic condensates when the interspecies spin-exchange coupling interaction c12βc_{12}\beta is adjusted. The two spin-1 condensates forming the mixture are respectively ferromagnetic and polar in the absence of an external magnetic (B-) field. We categorize all possible ground states using the angular momentum algebra and compute their characteristic atom number fluctuations, focusing especially on the the AA phase (when c12β>0 c_{12}\beta >0), where the ground state becomes fragmented and atomic number fluctuations exhibit drastically different features from a single stand alone spin-1 polar condensate. Our results are further supported by numerical simulations of the full quantum many-body system.Comment: 5 pages, 2 figures, in press PR

    Secure Quantum Secret Sharing Based on Reusable GHZ States as Secure Carriers

    Get PDF
    We show a potential eavesdropper can eavesdrop whole secret information when the legitimate users use secure carrier to encode and decode classical information repeatedly in the protocol [proposed in Bagherinezhad S and Karimipour V 2003 Phys. Rev. A \textbf{67} 044302]. Then we present a revised quantum secret sharing protocol by using Greenberger-Horne-Zeilinger state as secure carrier. Our protocol can resist Eve's attack

    History, Origins and Prediction of Elastohydrodynamic Friction

    Get PDF

    Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides

    Full text link
    This article reviews the NMR and NQR studies on iron-based high-temperature superconductors by the IOP/Okayama group. It was found that the electron pairs in the superconducting state are in the spin-singlet state with multiple fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal state are found to be closely correlated with the superconductivity. Also the antiferromagnetic spin fluctuations are anisotropic in the spin space, which is different from the case in copper oxide superconductors. This anisotropy originates from the spin-orbit coupling and is an important reflection of the multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure

    Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap

    Full text link
    We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure

    Atomic entanglement sudden death in a strongly driven cavity QED system

    Full text link
    We study the entanglement dynamics of strongly driven atoms off-resonantly coupled with cavity fields. We consider conditions characterized not only by the atom-field coupling but also by the atom-field detuning. By studying two different models within the framework of cavity QED, we show that the so-called atomic entanglement sudden death (ESD) always occurs if the atom-field coupling lager than the atom-field detuning, and is independent of the type of initial atomic state
    • …
    corecore