142 research outputs found

    Emoticon-based Ambivalent Expression: A Hidden Indicator for Unusual Behaviors in Weibo

    Full text link
    Recent decades have witnessed online social media being a big-data window for quantificationally testifying conventional social theories and exploring much detailed human behavioral patterns. In this paper, by tracing the emoticon use in Weibo, a group of hidden "ambivalent users" are disclosed for frequently posting ambivalent tweets containing both positive and negative emotions. Further investigation reveals that this ambivalent expression could be a novel indicator of many unusual social behaviors. For instance, ambivalent users with the female as the majority like to make a sound in midnights or at weekends. They mention their close friends frequently in ambivalent tweets, which attract more replies and thus serve as a more private communication way. Ambivalent users also respond differently to public affairs from others and demonstrate more interests in entertainment and sports events. Moreover, the sentiment shift of words adopted in ambivalent tweets is more evident than usual and exhibits a clear "negative to positive" pattern. The above observations, though being promiscuous seemingly, actually point to the self regulation of negative mood in Weibo, which could find its base from the emotion management theories in sociology but makes an interesting extension to the online environment. Finally, as an interesting corollary, ambivalent users are found connected with compulsive buyers and turn out to be perfect targets for online marketing.Comment: Data sets can be downloaded freely from www.datatang.com/data/47207 or http://pan.baidu.com/s/1mg67cbm. Any issues feel free to contact [email protected]

    Extroverts Tweet Differently from Introverts in Weibo

    Full text link
    Being dominant factors driving the human actions, personalities can be excellent indicators in predicting the offline and online behavior of different individuals. However, because of the great expense and inevitable subjectivity in questionnaires and surveys, it is challenging for conventional studies to explore the connection between personality and behavior and gain insights in the context of large amount individuals. Considering the more and more important role of the online social media in daily communications, we argue that the footprint of massive individuals, like tweets in Weibo, can be the inspiring proxy to infer the personality and further understand its functions in shaping the online human behavior. In this study, a map from self-reports of personalities to online profiles of 293 active users in Weibo is established to train a competent machine learning model, which then successfully identifies over 7,000 users as extroverts or introverts. Systematical comparisons from perspectives of tempo-spatial patterns, online activities, emotion expressions and attitudes to virtual honor surprisingly disclose that the extrovert indeed behaves differently from the introvert in Weibo. Our findings provide solid evidence to justify the methodology of employing machine learning to objectively study personalities of massive individuals and shed lights on applications of probing personalities and corresponding behaviors solely through online profiles.Comment: Datasets of this study can be freely downloaded through: https://doi.org/10.6084/m9.figshare.4765150.v
    • …
    corecore