5 research outputs found

    Emergence and Causality in Complex Systems: A Survey of Causal Emergence and Related Quantitative Studies

    No full text
    Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence (CE) theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of CE. It focuses on two primary challenges: quantifying CE and identifying it from data. The latter task requires the integration of machine learning and neural network techniques, establishing a significant link between causal emergence and machine learning. We highlight two problem categories: CE with machine learning and CE for machine learning, both of which emphasize the crucial role of effective information (EI) as a measure of causal emergence. The final section of this review explores potential applications and provides insights into future perspectives

    Identification of Radioactive Mineralized Lithology and Mineral Prospectivity Mapping Based on Remote Sensing in High-Latitude Regions: A Case Study on the Narsaq Region of Greenland

    No full text
    The harsh environment of high-latitude areas with large amounts of snow and ice cover makes it difficult to carry out full geological field surveys. Uranium resources are abundant within the Ilimaussaq Complex in the Narsaq region of Greenland, where the uranium ore body is strictly controlled by the Lujavrite formation, which is the main ore-bearing rock in the complex rock mass. Further, large aggregations of radioactive minerals appear as thermal anomalies on remote sensing thermal infrared imagery, which is indicative of deposits of highly radioactive elements. Using a weight-of-evidence analysis method that combines machine-learned lithological classification information with information on surface temperature thermal anomalies, the prediction of radioactive element-bearing deposits at high latitudes was carried out. Through the use of Worldview-2 (WV-2) remote sensing images, support vector machine algorithms based on texture features and topographic features were used to identify Lujavrite. In addition, the distribution of thermal anomalies associated with radioactive elements was inverted using Landsat 8 TIRS thermal infrared data. From the results, it was found that the overall accuracy of the SVM algorithm-based lithology mapping was 89.57%. The surface temperature thermal anomaly had a Spearman correlation coefficient of 0.63 with the total airborne measured uranium gamma radiation. The lithological classification information was integrated with surface temperature thermal anomalies and other multi-source remote sensing mineralization elements to calculate mineralization-favorable areas through a weight-of-evidence model, with high-value mineralization probability areas being spatially consistent with known mineralization areas. In conclusion, a multifaceted remote sensing information finding method, focusing on surface temperature thermal anomalies in high-latitude areas, provides guidance and has reference value for the exploration of potential mineralization areas for deposits containing radioactive elements

    Self-Stabilized Quasi-2D Perovskite with an Ion-Migration-Inhibition Ligand for Pure Green LEDs

    No full text
    Perovskite light-emitting diodes (PeLEDs) have recently achieved a great breakthrough in external quantum efficiency (EQE). However, the operational stability of pure primary color PeLEDs lags far behind because of serious ion migration. Herein, a self-stabilized quasi-2D perovskite is constructed with a strategically synthesized ion-migration-inhibition ligand (IMIligand) to realize highly stable and efficient pure green PeLEDs approaching the standard green light of Rec. 2020. The IMIligand takes the role to not only eliminate migration pathways and anchor halide ions to suppress the ion migration but to also further enhance the crystalline orientation and energy transfer in quasi-2D perovskites. Meanwhile, the self-stabilized quasi-2D perovskite overcomes the degradation of electrical performance caused by conventional exogenous passivation additives. Ultimately, the figure of merit of the pure green quasi-2D PeLEDs is at least double that of previous works. The devices achieve an EQE of 26.2% and operational stability of 920 min at initial luminance of 1000 cd m–2

    Simulation Studies Provide Evidence of Aerosol Transmission of SARS-CoV-2 in a Multi-Story Building via Air Supply, Exhaust and Sanitary Pipelines

    No full text
    A cross-layer non-vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in a quarantine hotel in Guangzhou, Guangdong Province, China in June 2021. To explore the cross-layer transmission path and influencing factors of viral aerosol, we set up different scenarios to carry out simulation experiments. The results showed that the air in the polluted room can enter the corridor by opening the door to take food and move out the garbage, then mix with the fresh air taken from the outside as part of the air supply of the central air conditioning system and re-enter into different rooms on the same floor leading to the same-layer transmission. In addition, flushing the toilet after defecation and urination will produce viral aerosol that pollutes rooms on different floors through the exhaust system and the vertical drainage pipe in the bathroom, resulting in cross-layer vertical transmission, also aggravating the transmission in different rooms on the same floor after mixing with the air of the room and entering the corridor to become part of the air supply, and meanwhile, continuing to increase the cross-layer transmission through the vertical drainage pipe. Therefore, the air conditioning and ventilation system of the quarantine hotel should be operated in full fresh air mode and close the return air; the exhaust volume of the bathroom should be greater than the fresh air volume. The exhaust pipe of the bathroom should be independently set and cannot be interconnected or connected in series. The riser of the sewage and drainage pipeline of the bathroom should maintain vertical to exhaust independently and cannot be arbitrarily changed to horizontal pipe assembly
    corecore