281 research outputs found
A Game of Simulation: Modeling and Analyzing the Dragons of Game of Thrones
This paper outlines two approaches for mathematical, simulation, modeling,
and analysis of hypothetical creatures, in particular, the dragons of HBO's
television series Game of Thrones (GOT). Our first approach, the forward model,
utilizes quasi-empirical observations of various features of GOT dragons. We
then mathematically derive the growth rate, other dimensions, energy
consumption, etc. In the backward model, we use projected energy consumption by
given ecological impact to model an expected dragon in terms of physical
features. We compare and contrast both models to examine the plausibility of a
real-world existence for our titular dragons and provide brief analyses of
potential impacts on ecology.Comment: 16 page
Recommended from our members
Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention.
Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks
Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1.
A family of DEDDh 3'→5' exonucleases known as Small RNA Degrading Nucleases (SDNs) initiates the turnover of ARGONAUTE1 (AGO1)-bound microRNAs in Arabidopsis by trimming their 3' ends. Here, we report the crystal structure of Arabidopsis SDN1 (residues 2-300) in complex with a 9 nucleotide single-stranded RNA substrate, revealing that the DEDDh domain forms rigid interactions with the N-terminal domain and binds 4 nucleotides from the 3' end of the RNA via its catalytic pocket. Structural and biochemical results suggest that the SDN1 C-terminal domain adopts an RNA Recognition Motif (RRM) fold and is critical for substrate binding and enzymatic processivity of SDN1. In addition, SDN1 interacts with the AGO1 PAZ domain in an RNA-independent manner in vitro, enabling it to act on AGO1-bound microRNAs. These extensive structural and biochemical studies may shed light on a common 3' end trimming mechanism for 3'→5' exonucleases in the metabolism of small non-coding RNAs
Radiation and checkpoint inhibitor immunotherapy lead to long term disease control in a metastatic RCC patient with brain metastases
Renal cell carcinoma (RCC) comprises 4.2% of all new cancer cases in the United States and 30% of cases are metastatic (mRCC) at diagnosis. Brain metastatic RCC historically has poor prognosis, but the development of immune checkpoint inhibitors has revolutionized their care and may be successfully combined with SBRT to improve prognosis. Here, we present a case of a patient with mRCC who had brain metastases treated with concurrent immune checkpoint inhibitors and SBRT. He continues to survive with good functional status years following his initial diagnosis. We discuss the relevant history regarding treatment approach in patients with brain metastatic RCC, ongoing trials focusing on the combination of immunotherapy and radiation, and the potential and promise of the abscopal effect
Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5Â years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy
Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3β dependent pathway in experimental diabetic cardiomyopathy
<p>Abstract</p> <p>Aims</p> <p>Diabetic cardiomyopathy, characterized by myocardial structural and functional changes, is a specific cardiomyopathy develops in patients with diabetes mellitus. The present study was to investigate the role of kinin B2 receptor-Akt-glycogen synthase kinase (GSK)-3β signalling pathway in mediating the protective effects of tanshinone IIA (TSN) on diabetic cardiomyopathy.</p> <p>Methods and results</p> <p>Streptozocin (STZ) induced diabetic rats (n = 60) were randomized to receive TSN, TSN plus HOE140 (a kinin B2 receptor antagonist), or saline. Healthy Sprague-Dawley (SD) rats (n = 20) were used as control. Left ventricular function, myocardial apoptosis, myocardial ultrastructure, Akt, GSK-3β and NF-κB phosphorylation, the expression of TNF-α, IL-6 and myeloperoxidase (MPO) were examined. Cardiac function was well preserved as evidenced by increased left ventricular ejection fraction (LVEF) and ± dp/dt (maximum speed of contraction/relaxation), along with decreased myocardial apoptotic death after TSN administration. TSN pretreatment alleviated mitochondria ultrastructure changes. TSN also enhanced Akt and GSK-3β phosphorylation and inhibited NF-κB phosphorylation, resulting in decreased TNF-α, IL-6 and MPO activities. Moreover, pretreatment with HOE140 abolished the beneficial effects of TSN: a decrease in LVEF and ± dp/dt, an inhibition of cardiomyocyte apoptosis, a destruction of cardiomyocyte mitochondria cristae, a reduction of Akt and GSK-3β phosphorylation, an enhancement of NF-κB phosphorylation and an increase of TNF-α, IL-6 and MPO production.</p> <p>Conclusion</p> <p>These data indicated that TSN is cardioprotective in the context of diabetic cardiomyopathy through kinin B2 receptor-Akt-GSK-3β dependent pathway.</p
Privacy-preserving inpainting for outsourced image
In this article, a framework of privacy-preserving inpainting for outsourced image and an encrypted-image inpainting scheme are proposed. Different with conventional image inpainting in plaintext domain, there are two entities, that is, content owner and image restorer, in our framework. Content owner first encrypts his or her damaged image for privacy protection and outsources the encrypted, damaged image to image restorer, who may be a cloud server with powerful computation capability. Image restorer performs inpainting in encrypted domain and sends the inpainted and encrypted image back to content owner or authorized receiver, who can acquire final inpainted result in plaintext domain through decryption. In our encrypted-image inpainting scheme, with the assist of Johnson–Lindenstrauss transform that can preserve Euclidean distance between two vectors before and after encryption, the best-matching block with the smallest distance to current block can be found and utilized for patch filling in Paillier-encrypted image. To eliminate mosaic effect after decryption, weighted mean filtering in encrypted domain is conducted with Paillier homomorphic properties. Experimental results show that our privacy-preserving inpainting framework can be effectively applied in secure cloud computing, and the proposed encrypted-image inpainting scheme achieves comparable visual quality of inpainted results with some typical inpainting schemes in plaintext domain
Exploration of the Modulatory Property Mechanism of ELeng Capsule in the Treatment of Endometriosis Using Transcriptomics Combined With Systems Network Pharmacology
Endometriosis is a common gynecological disease and causes severe chronic pelvic pain and infertility. Growing evidence showed that traditional Chinese medicine (TCM) plays an active role in the treatment of endometriosis. ELeng Capsule (ELC) is a Chinese medicine formula used for the treatment of endometriosis for several years. However, the mechanisms of ELC have not been fully characterized. In this study, network pharmacology and mRNA transcriptome analysis were used to study various therapeutic targets in ELC. As a result, 40 compounds are identified, and 75 targets overlapped with endometriosis-related proteins. The mechanism of ELC for the treatment of endometriosis is based on the function modules of inducing apoptosis, inhibiting angiogenesis, and regulating immunity mainly through signaling molecules and interaction (neuroactive ligand–receptor interaction), immune system–associated pathways (toll-like receptor signaling pathway), vascular endothelial growth factor (VEGF) signaling, and MAPK signaling pathway based on network pharmacology. In addition, based on RNA-sequence analysis, we found that the mechanism of ELC was predominantly associated with the regulation of the function modules of actin and cytoskeleton, epithelial–mesenchymal transition (EMT), focal adhesion, and immunity-associated pathways. In conclusion, ELC exerted beneficial effects on endometriosis, and the potential mechanism could be realized through functional modules, such as inducing apoptosis and regulating angiogenesis, cytoskeleton, and EMT. This work not only provides insights into the therapeutic mechanism of TCM for treating endometriosis but also offers an efficient way for drug discovery and development from herbal medicine
Diagnostic value of exosomal noncoding RNA in lung cancer: a meta-analysis
BackgroundLung cancer is one of the most dangerous cancers in the world. Most lung cancer patients are diagnosed in the middle and later stages, which can lead to poor survival rates. The development of lung cancer is often accompanied by abnormal expression of exosomal non-coding RNAs, which means that they have the potential to serve as noninvasive novel molecular markers for lung cancer diagnosis.MethodsFor this study, we conducted a comprehensive literature search in PubMed, Web of science, Science direct, Embase, Cochrane, and Medline databases, and by reviewing published literature, The diagnostic capacity of exosomal microRNAs (miRNAs), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) for lung cancer was evaluated. Functional enrichment analysis of miRNA target genes was performed.ResultsThe study included 41 papers, a total of 68 studies. More than 60 miRNAs, 9 lncRNAs and 14 circRNAs were involved. The combined sensitivity and specificity were 0.83(95%CI, 0.80~0.86) and 0.83(95% CI,0.79~0.87); 0.71(95% CI,0.68~0.74) and 0.79(95%CI, 0.75~0.82); 0.79(95%CI,0.67~0.87) and 0.81(95%CI,0.74~0.86), and constructed overall subject operating characteristic curves with the summarized area under the curve values of 0.90, 0.82, and 0.86.ConclusionOur study shows that exosomes miRNAs, lncRNAs and circRNAs are effective in the diagnosis of lung cancer, providing evidence for studies related to novel lung cancer diagnostic markers.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42023457087
- …