16 research outputs found

    The effect of PID control scheme on the course-keeping of ship in oblique stern waves

    Get PDF
    Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship\u27s heading and wave parameters

    NUMERICAL STUDY ON PROPULSIVE FACTORS IN REGULAR HEAD AND OBLIQUE WAVES

    Get PDF
    This paper applies Reynolds-averaged Navier-Stokes (RANS) method to study propulsion performance in head and oblique waves. Finite volume method (FVM) is employed to discretize the governing equations and SST k-ω model is used for modeling the turbulent flow. The free surface is solved by volume of fluid (VOF) method. Sliding mesh technique is used to enable rotation of propeller. Propeller open water curves are determined by propeller open water simulations. Calm water resistance and wave added resistances are obtained from towing computations without propeller. Self-propulsion simulations in calm water and waves with varying loads are performed to obtain self-propulsion point and thrust identify method is use to predict propulsive factors. Regular head waves with wavelengths varying from 0.6 to 1.4 times the length of ship and oblique waves with incident directions varying from 0° to 360° are considered. The influence of waves on propulsive factors, including thrust deduction and wake fraction, open water, relative rotative, hull and propulsive efficiencies are discussed

    The Prediction of Hull Gesture and Flow Around Ship Based on Taylor Expansion Boundary Element Method

    No full text
    Based on the potential flow theory and traditional boundary element method (BEM), Taylor expansion boundary element method (TEBEM) is introduced in this paper for the prediction of the flow field around ship, as a result, hull gesture and pressure distribution on hull surface are obtained. By this method, dipole strength of every field point is expanded in Taylor expansion, so that approximately continuous hull and free surface boundary condition could be achieved. To close the new equation system, the boundary condition of tangent velocity in every control point is introduced. With the simultaneous solving of hull boundary condition and free surface condition, the disturbance velocity potential could be obtained. The present method is used to predict the flow field and hull gesture of Wigley parabolic hull, Series 60 and KVLCC2 models. To validate the numerical model for full form ship, the wave profile, the computed hull gesture and hull surface pressure of KVLCC2 model are compared with experimental results

    The Prediction of Hull Gesture and Flow Around Ship Based on Taylor Expansion Boundary Element Method

    No full text
    Based on the potential flow theory and traditional boundary element method (BEM), Taylor expansion boundary element method (TEBEM) is introduced in this paper for the prediction of the flow field around ship, as a result, hull gesture and pressure distribution on hull surface are obtained. By this method, dipole strength of every field point is expanded in Taylor expansion, so that approximately continuous hull and free surface boundary condition could be achieved. To close the new equation system, the boundary condition of tangent velocity in every control point is introduced. With the simultaneous solving of hull boundary condition and free surface condition, the disturbance velocity potential could be obtained. The present method is used to predict the flow field and hull gesture of Wigley parabolic hull, Series 60 and KVLCC2 models. To validate the numerical model for full form ship, the wave profile, the computed hull gesture and hull surface pressure of KVLCC2 model are compared with experimental results

    Study on the Effect of Hull Attitude on the Resistance Reduction of SWATH with Airflow Injection

    No full text
    With the development of the green ship concept in design and construction, how to reduce the resistance to reduce fuel consumption has become a focus of ship research. As an important drag reduction method, the air lubrication method has been applied to various ship types, but it is still a new method in the study of SWATH (small waterplane area twin hull) drag reduction. In this paper, the air lubrication method is applied to a SWATH model with an overall length of 2.5 m to numerically study the influence of the hull attitude on the air coverage and resistance reduction. The grid is verified by the grid independence and the experiment results. Then, the resistance of the SWATH model under different trim angles and drafts is calculated, and the air coverage on the surface is observed. The drag reduction rates of different areas, including the strut, underwater body, and fins, are analyzed, too. The results show that the slight trim by the head is more conducive to the resistance reduction of the SWATH model, and the resistance reduction rate can reach 39.11%. The draft mainly affects the resistance reduction of the strut, and the difference is more than 10%

    An artificial intelligence-aided design (AIAD) of ship hull structures

    No full text
    Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship. To find the optimum hull shape under the design requirements, the state-of-art of ship hull design combines computational fluid dynamics computation with geometric modeling. However, this process is very computationally intensive, which is only suitable at the final stage of the design process. To narrow down the design parameter space, in this work, we have developed an AI-based deep learning neural network to realize a real-time prediction of the total resistance of the ship-hull structure in its initial design process. In this work, we have demonstrated how to use the developed DNN model to carry out the initial ship hull design. The validation results showed that the deep learning model could accurately predict the ship hull’s total resistance accurately after being trained, where the average error of all samples in the testing dataset is lower than 4%. Simultaneously, the trained deep learning model can predict the hip’s performances in real-time by inputting geometric modification parameters without tedious preprocessing and calculation processes. The machine learning approach in ship hull design proposed in this work is the first step towards the artificial intelligence-aided design in naval architectures

    Integrating k-means Clustering and LSTM for Enhanced Ship Heading Prediction in Oblique Stern Wave

    No full text
    The stability of navigation in waves is crucial for ships, and the effect of the waves on navigation stability is complicated. Hence, the LSTM neural network technique is applied to predict the course changing of a ship in different wave conditions, where K-means clustering analysis is used for the category of the ship’s navigation data to improve the quality of the database. In this paper, the effect of the initial database obtained by the K-means clustering analysis on prediction accuracy is studied first. Then, different input features are used to establish the database to train the neural network, and the influence of the database by different input features on the accuracy of the navigation prediction is discussed and analyzed. Finally, multi-task learning is used to make the neural network better predict the navigation in various wave conditions. Using the improved neural network model, the course of an autopilot ship in waves is predicted, and the results show that the current database and the neural network model are accurate enough for the course prediction of the autopilot ship in waves
    corecore