15 research outputs found

    High intensity interval training vs. moderate intensity continuous training on aerobic capacity and functional capacity in patients with heart failure: a systematic review and meta-analysis

    Get PDF
    BackgroundExercise training is commonly employed as a efficacious supplementary treatment for individuals suffering from heart failure, but the optimal exercise regimen is still controversial. The objective of the review was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the exercise capacity, cardiac function, quality of life (QoL) and heart rate among patients with heart failure with reduced ejection fraction.MethodsA systematic search was performed using the following eight databases from their inception to July 5, 2023: PubMed, Web of Science, Embase, Cochrane Library, Clinical Trials, China Knowledge Network, Wan fang Data, and the China Biology Medicine databases. The meta-analysis results were presented as mean difference (MD) and 95% confidence interval (CI). The Cochrane Risk of Bias tool was used for the included studies. The Grading of Recommendations Assessment, Development, and Evaluations was used to assess the certainty of evidence.ResultsThirteen randomized controlled trials were included in the study. The results showed that HIIT had a significant positive effect on peak oxygen uptake (MD = 1.78, 95% CI for 0.80–2.76), left ventricular ejection fraction (MD = 3.13, 95% CI for 1.25–5.02), six-minute walk test (MD = 28.13, 95% CI for 14.56–41.70), and Minnesota Living with Heart Failure Questionnaire (MD = −4.45, 95% CI for −6.25 to −2.64) compared to MICT. However, there were no statistically significant differences observed in resting heart rate and peak heart rate.ConclusionsHIIT significantly improves peak oxygen uptake, left ventricular ejection fraction, six-minute walk test, and Minnesota Living with Heart Failure Questionnaire in patients with heart failure with reduced ejection fraction. Additionally, HIIT exhibits greater effectiveness in improving peak oxygen uptake among patients with lower body mass index.Systematic Review Registrationhttps://www.doi.org/10.37766/inplasy2023.7.0100, identifier (INPLASY2023.7.0100)

    Collaborative Design of Static and Vibration Properties of a Novel Re-Entrant Honeycomb Metamaterial

    No full text
    A novel re-entrant honeycomb metamaterial based on 3D-printing technology is proposed by introducing chiral structures into diamond honeycomb metamaterial (DHM), named chiral-diamond-combined honeycomb metamaterial (CDCHM), and has been further optimized using the assembly idea. Compared with the traditional DHM, the CDCHM has better performance in static and vibration isolation. The static and vibration properties of the DHM and CDCHM are investigated by experiments and simulations. The results show that the CDCHM has a higher load-carrying capacity than that of the DHM. In addition, the vibration isolation optimal design schemes of the DHM and CDCHM are examined by experiments and simulations. It is found that the vibration suppression of the CDCHM is also improved greatly. In particular, the optimization approach with metal pins and particle damping achieves a wider bandgap in the low-frequency region, which can strengthen the suppression of low-frequency vibrations. And the introduction of particle damping can not only design the frequency of the bandgap via the alteration of the dosage, but also enhance the damping of the main structure. This work presents a new design idea for metamaterials, which provides a reference for the collaborative design of the static and vibration properties of composite metamaterials

    Nicorandil Protects the Heart from Ischemia/Reperfusion Injury by Attenuating Endoplasmic Reticulum Response-induced Apoptosis Through PI3K/Akt Signaling Pathway

    No full text
    Background/Aims: As a vasodilatory drug used to treat angina, nicorandil has been shown to induce an infarct-limiting effect in various experimental animal models of myocardial ischemia-reperfusion (IR). There are multiple mechanisms causing the IR injury, among which, the endoplasmic reticulum (ER) stress and ER stress-initiated apoptosis are implicated to play an important role. However, whether ER stress is involved in nicorandil-induced cardioprotection is unknown. Methods: Post-ischemic functional recovery, lactate dehydrogenase (LDH) release and infarct size in perfused rat hearts subjected to global no-flow I/R were measured to analysis the effect of nicorandil and ER stress inducer of tunicamycin as well as phosphatidylinositol 3-kinase (PI3K) inhibitor of wortmannin on the I/R hearts. The I/R hearts tissue were harvested to evaluate apoptosis ratio with TUNEL assay and protein expression with western blot. Results: We showed that nicorandil ameliorated postischemic contractile recovery, as well as significantly reduced myocardial infarct size at a dose-dependent manner. Furthermore, nicorandil treatment inhibited the IR-induced apoptosis and ER stress. The beneficial effects of nicorandil were blocked by ER stress inducer, tunicamycin and specific phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Concolusion: We conclude that the cardioprotection of nicorandil was at least in part mediated via inhibition of ER stress-induced apoptotic cell death through PI3K/Akt pathway

    Collaborative biofluid analysis based multi-channel integrated wearable detection system for the monitoring of wound infection

    No full text
    The infection monitoring of chronic wounds can effectively improve the quality of wound care. However, the widely used single variable intermittent monitoring of wound provides little available information, which leads to inaccurate diagnosis and untimely warnings. In this study, a collaborative biofluid analysis based multi-channel integrated wearable detection system was constructed for the continuous detection of analytes such as pH, uric acid (UA), and C-reactive protein (CRP) in wound exudates with time division multiplexing. Based on the functionally modification with nanomaterials, integrated screen-printed electrodes (iSPE) with three working electrodes were designed for the collaboratively analyzing of wound exudates. Through the development of integrated circuits, the multi-channel wearable detection printed circuit board was constructed. With a self-designed interface, this iSPE was stably connected to the printed circuit board and realized the detection of three targets in the range of pH 3–8, UA concentrations 5–500 μmol/L, and CRP concentrations 1–1000 ng/mL at the same time. Combined with a smartphone, these results were collaborated analyzed and transferred for health management. Therefore, this integrated wearable multi-channel detection system can provide reliable and continuous evaluations for early warning of infection and further treatment of chronic wounds

    Selective Palladium-Catalyzed Carbonylation of Alkynes: An Atom-Economic Synthesis of 1,4-Dicarboxylic Acid Diesters

    No full text
    A class of novel diphosphine ligands bearing pyridine substituents was designed and synthesized for the first time. The resulting palladium complexes of <b>L1</b> allow for chemo- and regioselective dialkoxycarbonylation of various aromatic and aliphatic alkynes affording a wide range of 1,4-dicarboxylic acid diesters in high yields and selectivities. Kinetic studies suggest the generation of 1,4-dicarboxylic acid diesters via cascade hydroesterification of the corresponding alkynes. Based on these investigations, the chemo- and regioselectivities of alkyne carbonylations can be controlled as shown by switching the ligand from <b>L1</b> to <b>L3</b> or <b>L9</b> to give α,β-unsaturated esters

    Screening of the candidate genes related to low-temperature tolerance of Fenneropenaeus chinensis based on high-throughput transcriptome sequencing.

    No full text
    In order to screen the candidate genes of Fenneropenaeus chinensis related to low-temperature tolerance, this research takes juvenile prawns of F. chinensis (P40) in low temperature stress group (4°C) and normal temperature group (18°C) as experimental materials. The results showed that a total of 127,939 Unigenes with average length of 1,190 bp were obtained by assembly, of which 46% were annotated in the Nr database. A total of 1,698 differentially expressed genes were screened by differential gene expression analysis, of which 920 genes showed up-regulated expression and 778 genes showed down-regulated expression. Both GO and KEGG enrichment analysis revealed that differentially expressed genes were enriched in spliceosomes, ribosomes, bile secretion, ABC transport pathways, and cellular nitrogen compound synthesis. A further in-depth analysis obtained 8 genes that may be associated with low-temperature traits of F. chinensis. Five of them displayed up-regulated expression, including ATP-binding cassette protein C, acid ceramidase, glutathione transferase, C-type lectin and heat shock protein HSP70. The remaining three genes, γ-butyl betaine hydroxylase, β-hexosaminidase A and long chain fatty acid-CoA ligase displayed down-regulated expression. Eight differentially expressed genes were randomly selected and the real time RT-PCR verification showed that their expression levels were consistent with the sequencing results, demonstrating the accuracy of the sequencing results. The results of this study provide basic data for revealing the molecular mechanisms of F. chinensis in response to low temperature stress and the molecular assisted breeding of F. chinensis in low temperature

    A Survey of Battery&ndash;Supercapacitor Hybrid Energy Storage Systems: Concept, Topology, Control and Application

    No full text
    A hybrid energy-storage system (HESS), which fully utilizes the durability of energy-oriented storage devices and the rapidity of power-oriented storage devices, is an efficient solution to managing energy and power legitimately and symmetrically. Hence, research into these systems is drawing more attention with substantial findings. A battery&ndash;supercapacitor hybrid energy-storage system (BS-HESS) is widely adopted in the fields of renewable energy integration, smart- and micro-grids, energy integration systems, etc. Focusing on the BS-HESS, in this work we present a comprehensive survey including technologies of the battery management system (BMS), power conversion system (PCS), energy management system (EMS), predictive control techniques of the underlying system, application and cost-effective feasibility aspects, etc. This work reflects strong symmetry on different aspects of designing an HESS, and provides guidelines and design references for the research and application of an HESS

    A Survey of Battery–Supercapacitor Hybrid Energy Storage Systems: Concept, Topology, Control and Application

    No full text
    A hybrid energy-storage system (HESS), which fully utilizes the durability of energy-oriented storage devices and the rapidity of power-oriented storage devices, is an efficient solution to managing energy and power legitimately and symmetrically. Hence, research into these systems is drawing more attention with substantial findings. A battery–supercapacitor hybrid energy-storage system (BS-HESS) is widely adopted in the fields of renewable energy integration, smart- and micro-grids, energy integration systems, etc. Focusing on the BS-HESS, in this work we present a comprehensive survey including technologies of the battery management system (BMS), power conversion system (PCS), energy management system (EMS), predictive control techniques of the underlying system, application and cost-effective feasibility aspects, etc. This work reflects strong symmetry on different aspects of designing an HESS, and provides guidelines and design references for the research and application of an HESS
    corecore