22 research outputs found

    Generic Modeling Method of Quasi-One-Dimensional Flow for Aeropropulsion System Test Facility

    No full text
    To support the advanced controller design and verification of the Aeropropulsion System Test Facility (ASTF), it is necessary to establish a mathematical model of ASTF with high precision and replace the current lumped parameter model. Therefore, a quasi-one-dimensional flow model of ASTF is established considering friction, localized losses, heat transfer, etc. Moreover, a generic modeling method is proposed for quasi-one-dimensional flow. With this method, all component models of ASTF are composed of staggered central control volume (CCV) and boundary control volume (BCV) and connected through virtual control volume. Thus, the properties of quasi-one-dimensional flow, such as spatial effect and time delay, can be easily addressed during the modeling process. The simulation results show that the quasi-one-dimensional flow model has higher accuracy than the lumped parameter model. Comparing the simulation results of the quasi-one-dimensional flow model with the test data, the relative errors of flow and pressure are less than 2.2% and 1.4%, respectively, further verifying the correctness of the proposed modeling method

    Numerical calculation and experimental analysis of thermal environment in industrialized aquaculture facilities.

    No full text
    With the increasing market demand for high-quality aquatic products, the application of industrialized aquaculture facilities may get more attention. In order to improve the poor performance of thermal insulation, the accuracy of the numerical model was verified in this study through actual measured data. The model verification results shown that the average relative errors of the measured and calculated values of indoor air temperature, water temperature and roof inner surface temperature in the industrialized aquaculture workshop is within 2.5%, it suggested that the numerical calculation results are accurate. Furthermore, the thermal environment and thermal insulation performance of industrialized aquaculture facilities in winter were conducted based on the numerical calculations. After optimized the thermophysical parameters of the workshop enclosure structure, we found that the water body temperature could reach 21°C (which was close to the breeding temperature of grouper (Epinephelinae). Therefore, the numerical calculation method was further used to analyze the energy consumption of aquaculture water in January of a typical year in this area by heating to three constant temperatures (22, 25, and 28°C). When the aquaculture water was heated to the three constant temperature states, it needed to consume 8.56×105, 1.02×106 and 1.22×106 MJ of energy respectively, which were equal to the amount of energy released by the complete combustion of 29.3, 35.1 and 41.8 t standard coal. Moreover, it is concluded that the artificial temperature increase in winter maintains the temperature in the range of 22~25°C to provide the highest heating efficiency. This conclusion can provide theoretical basis and application reference for industrialized aquaculture in winter

    Generic Modeling Method of Quasi-One-Dimensional Flow for Aeropropulsion System Test Facility

    No full text
    To support the advanced controller design and verification of the Aeropropulsion System Test Facility (ASTF), it is necessary to establish a mathematical model of ASTF with high precision and replace the current lumped parameter model. Therefore, a quasi-one-dimensional flow model of ASTF is established considering friction, localized losses, heat transfer, etc. Moreover, a generic modeling method is proposed for quasi-one-dimensional flow. With this method, all component models of ASTF are composed of staggered central control volume (CCV) and boundary control volume (BCV) and connected through virtual control volume. Thus, the properties of quasi-one-dimensional flow, such as spatial effect and time delay, can be easily addressed during the modeling process. The simulation results show that the quasi-one-dimensional flow model has higher accuracy than the lumped parameter model. Comparing the simulation results of the quasi-one-dimensional flow model with the test data, the relative errors of flow and pressure are less than 2.2% and 1.4%, respectively, further verifying the correctness of the proposed modeling method

    Optimization scheme table.

    No full text
    With the increasing market demand for high-quality aquatic products, the application of industrialized aquaculture facilities may get more attention. In order to improve the poor performance of thermal insulation, the accuracy of the numerical model was verified in this study through actual measured data. The model verification results shown that the average relative errors of the measured and calculated values of indoor air temperature, water temperature and roof inner surface temperature in the industrialized aquaculture workshop is within 2.5%, it suggested that the numerical calculation results are accurate. Furthermore, the thermal environment and thermal insulation performance of industrialized aquaculture facilities in winter were conducted based on the numerical calculations. After optimized the thermophysical parameters of the workshop enclosure structure, we found that the water body temperature could reach 21°C (which was close to the breeding temperature of grouper (Epinephelinae). Therefore, the numerical calculation method was further used to analyze the energy consumption of aquaculture water in January of a typical year in this area by heating to three constant temperatures (22, 25, and 28°C). When the aquaculture water was heated to the three constant temperature states, it needed to consume 8.56×105, 1.02×106 and 1.22×106 MJ of energy respectively, which were equal to the amount of energy released by the complete combustion of 29.3, 35.1 and 41.8 t standard coal. Moreover, it is concluded that the artificial temperature increase in winter maintains the temperature in the range of 22~25°C to provide the highest heating efficiency. This conclusion can provide theoretical basis and application reference for industrialized aquaculture in winter.</div

    A Multi-Cavity Iterative Modeling Method for the Exhaust Systems of Altitude Ground Test Facilities

    No full text
    To solve the modeling problem of altitude ground test facility (AGTF) exhaust systems, which is caused by nonlinearity along the gas path and the difficulty of ejection factor calculation, a multi-cavity iterative modeling method is presented. The components of exhaust systems, such as the exhaust diffuser and cooler, are built with a series of volumes. It overcomes the disadvantage that traditional lumped-parameter models have, whereby they cannot calculate the dynamic parameters along the gas path. The exhaust system model is built with an iterative method based on multi-cavity components, and simulations are carried out under experimental conditions. The simulation results show that the maximum error of pressure is 2 kPa in the steady state and less than 6 kPa in the transient process compared with experimental data. Closed-loop simulations are also carried out to further verify the accuracy and effectiveness of the multi-cavity iterative exhaust system modeling method

    Grid information table.

    No full text
    With the increasing market demand for high-quality aquatic products, the application of industrialized aquaculture facilities may get more attention. In order to improve the poor performance of thermal insulation, the accuracy of the numerical model was verified in this study through actual measured data. The model verification results shown that the average relative errors of the measured and calculated values of indoor air temperature, water temperature and roof inner surface temperature in the industrialized aquaculture workshop is within 2.5%, it suggested that the numerical calculation results are accurate. Furthermore, the thermal environment and thermal insulation performance of industrialized aquaculture facilities in winter were conducted based on the numerical calculations. After optimized the thermophysical parameters of the workshop enclosure structure, we found that the water body temperature could reach 21°C (which was close to the breeding temperature of grouper (Epinephelinae). Therefore, the numerical calculation method was further used to analyze the energy consumption of aquaculture water in January of a typical year in this area by heating to three constant temperatures (22, 25, and 28°C). When the aquaculture water was heated to the three constant temperature states, it needed to consume 8.56×105, 1.02×106 and 1.22×106 MJ of energy respectively, which were equal to the amount of energy released by the complete combustion of 29.3, 35.1 and 41.8 t standard coal. Moreover, it is concluded that the artificial temperature increase in winter maintains the temperature in the range of 22~25°C to provide the highest heating efficiency. This conclusion can provide theoretical basis and application reference for industrialized aquaculture in winter.</div

    Physical characteristic parameters.

    No full text
    With the increasing market demand for high-quality aquatic products, the application of industrialized aquaculture facilities may get more attention. In order to improve the poor performance of thermal insulation, the accuracy of the numerical model was verified in this study through actual measured data. The model verification results shown that the average relative errors of the measured and calculated values of indoor air temperature, water temperature and roof inner surface temperature in the industrialized aquaculture workshop is within 2.5%, it suggested that the numerical calculation results are accurate. Furthermore, the thermal environment and thermal insulation performance of industrialized aquaculture facilities in winter were conducted based on the numerical calculations. After optimized the thermophysical parameters of the workshop enclosure structure, we found that the water body temperature could reach 21°C (which was close to the breeding temperature of grouper (Epinephelinae). Therefore, the numerical calculation method was further used to analyze the energy consumption of aquaculture water in January of a typical year in this area by heating to three constant temperatures (22, 25, and 28°C). When the aquaculture water was heated to the three constant temperature states, it needed to consume 8.56×105, 1.02×106 and 1.22×106 MJ of energy respectively, which were equal to the amount of energy released by the complete combustion of 29.3, 35.1 and 41.8 t standard coal. Moreover, it is concluded that the artificial temperature increase in winter maintains the temperature in the range of 22~25°C to provide the highest heating efficiency. This conclusion can provide theoretical basis and application reference for industrialized aquaculture in winter.</div

    Workshop scene.

    No full text
    With the increasing market demand for high-quality aquatic products, the application of industrialized aquaculture facilities may get more attention. In order to improve the poor performance of thermal insulation, the accuracy of the numerical model was verified in this study through actual measured data. The model verification results shown that the average relative errors of the measured and calculated values of indoor air temperature, water temperature and roof inner surface temperature in the industrialized aquaculture workshop is within 2.5%, it suggested that the numerical calculation results are accurate. Furthermore, the thermal environment and thermal insulation performance of industrialized aquaculture facilities in winter were conducted based on the numerical calculations. After optimized the thermophysical parameters of the workshop enclosure structure, we found that the water body temperature could reach 21°C (which was close to the breeding temperature of grouper (Epinephelinae). Therefore, the numerical calculation method was further used to analyze the energy consumption of aquaculture water in January of a typical year in this area by heating to three constant temperatures (22, 25, and 28°C). When the aquaculture water was heated to the three constant temperature states, it needed to consume 8.56×105, 1.02×106 and 1.22×106 MJ of energy respectively, which were equal to the amount of energy released by the complete combustion of 29.3, 35.1 and 41.8 t standard coal. Moreover, it is concluded that the artificial temperature increase in winter maintains the temperature in the range of 22~25°C to provide the highest heating efficiency. This conclusion can provide theoretical basis and application reference for industrialized aquaculture in winter.</div
    corecore