452 research outputs found

    Large-scale global optimization of ultra-high dimensional non-convex landscapes based on generative neural networks

    Full text link
    We present a non-convex optimization algorithm metaheuristic, based on the training of a deep generative network, which enables effective searching within continuous, ultra-high dimensional landscapes. During network training, populations of sampled local gradients are utilized within a customized loss function to evolve the network output distribution function towards one peak at high-performing optima. The deep network architecture is tailored to support progressive growth over the course of training, which allows the algorithm to manage the curse of dimensionality characteristic of high-dimensional landscapes. We apply our concept to a range of standard optimization problems with dimensions as high as one thousand and show that our method performs better with fewer function evaluations compared to state-of-the-art algorithm benchmarks. We also discuss the role of deep network over-parameterization, loss function engineering, and proper network architecture selection in optimization, and why the required batch size of sampled local gradients is independent of problem dimension. These concepts form the foundation for a new class of algorithms that utilize customizable and expressive deep generative networks to solve non-convex optimization problems

    Balanced Multi-modal Federated Learning via Cross-Modal Infiltration

    Full text link
    Federated learning (FL) underpins advancements in privacy-preserving distributed computing by collaboratively training neural networks without exposing clients' raw data. Current FL paradigms primarily focus on uni-modal data, while exploiting the knowledge from distributed multimodal data remains largely unexplored. Existing multimodal FL (MFL) solutions are mainly designed for statistical or modality heterogeneity from the input side, however, have yet to solve the fundamental issue,"modality imbalance", in distributed conditions, which can lead to inadequate information exploitation and heterogeneous knowledge aggregation on different modalities.In this paper, we propose a novel Cross-Modal Infiltration Federated Learning (FedCMI) framework that effectively alleviates modality imbalance and knowledge heterogeneity via knowledge transfer from the global dominant modality. To avoid the loss of information in the weak modality due to merely imitating the behavior of dominant modality, we design the two-projector module to integrate the knowledge from dominant modality while still promoting the local feature exploitation of weak modality. In addition, we introduce a class-wise temperature adaptation scheme to achieve fair performance across different classes. Extensive experiments over popular datasets are conducted and give us a gratifying confirmation of the proposed framework for fully exploring the information of each modality in MFL.Comment: 10 pages, 5 figures 4 table

    Dual-mode adaptive-SVD ghost imaging

    Full text link
    In this paper, we present a dual-mode adaptive singular value decomposition ghost imaging (A-SVD GI), which can be easily switched between the modes of imaging and edge detection. It can adaptively localize the foreground pixels via a threshold selection method. Then only the foreground region is illuminated by the singular value decomposition (SVD) - based patterns, consequently retrieving high-quality images with fewer sampling ratios. By changing the selecting range of foreground pixels, the A-SVD GI can be switched to the mode of edge detection to directly reveal the edge of objects, without needing the original image. We investigate the performance of these two modes through both numerical simulations and experiments. We also develop a single-round scheme to halve measurement numbers in experiments, instead of separately illuminating positive and negative patterns in traditional methods. The binarized SVD patterns, generated by the spatial dithering method, are modulated by a digital micromirror device (DMD) to speed up the data acquisition. This dual-mode A-SVD GI can be applied in various applications, such as remote sensing or target recognition, and could be further extended for multi-modality functional imaging/detection

    DualMix: Unleashing the Potential of Data Augmentation for Online Class-Incremental Learning

    Full text link
    Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.Comment: 10 pages, 7 figures and 3 table
    • …
    corecore