164 research outputs found

    On the Robustness of Average Losses for Partial-Label Learning

    Full text link
    Partial-label (PL) learning is a typical weakly supervised classification problem, where a PL of an instance is a set of candidate labels such that a fixed but unknown candidate is the true label. For PL learning, there are two lines of research: (a) the identification-based strategy (IBS) purifies each label set and extracts the true label; (b) the average-based strategy (ABS) treats all candidates equally for training. In the past two decades, IBS was a much hotter topic than ABS, since it was believed that IBS is more promising. In this paper, we theoretically analyze ABS and find it also promising in the sense of the robustness of its loss functions. Specifically, we consider five problem settings for the generation of clean or noisy PLs, and we prove that average PL losses with bounded multi-class losses are always robust under mild assumptions on the domination of true labels, while average PL losses with unbounded multi-class losses (e.g., the cross-entropy loss) may not be robust. We also conduct experiments to validate our theoretical findings. Note that IBS is heuristic, and we cannot prove its robustness by a similar proof technique; hence, ABS is more advantageous from a theoretical point of view, and it is worth paying attention to the design of more advanced PL learning methods following ABS

    Quantitative and dark field ghost imaging with ultraviolet light

    Full text link
    Ultraviolet (UV) imaging enables a diverse array of applications, such as material composition analysis, biological fluorescence imaging, and detecting defects in semiconductor manufacturing. However, scientific-grade UV cameras with high quantum efficiency are expensive and include a complex thermoelectric cooling system. Here, we demonstrate a UV computational ghost imaging (UV-CGI) method to provide a cost-effective UV imaging and detection strategy. By applying spatial-temporal illumination patterns and using a 325 nm laser source, a single-pixel detector is enough to reconstruct the images of objects. To demonstrate its capability for quantitative detection, we use UV-CGI to distinguish four UV-sensitive sunscreen areas with different densities on a sample. Furthermore, we demonstrate dark field UV-CGI in both transmission and reflection schemes. By only collecting the scattered light from objects, we can detect the edges of pure phase objects and small scratches on a compact disc. Our results showcase a feasible low-cost solution for non-destructive UV imaging and detection. By combining it with other imaging techniques, such as hyperspectral imaging or time-resolved imaging, a compact and versatile UV computational imaging platform may be realized for future applications.Comment: 9 pages, 5 figure

    Cardiovascular disease during the COVID-19 pandemic: Think ahead, protect hearts, reduce mortality

    Get PDF
    Coronavirus disease 2019 (COVID-19) is rapidly spreading globally. As of October 3, 2020, the number of confirmed cases has been nearly 34 million with more than 1 million fatalities. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for COVID-19. Newly diagnosed and worsening cardiovascular disease are common complications in COVID-19 patients, including acute cardiac injury, hypertension, arrhythmia, myocardial infarction, heart failure and sudden cardiac arrest. The mechanisms contributing to cardiac disease burden include hypoxemia, inflammatory factor storm, dysfunctional angiotensin converting enzyme 2 (ACE2), and drug-induced cardiac toxicity.Notably, the macrophages expressing ACE2 as direct host cells of SARS-CoV-2 secrete chemokine and inflammatory cytokines, as well as a decrease in cellular immune responses to SARS-CoV-2 infection due to elevated exhaustion levels and dysfunctional diversity of T cells, that may be accountable for the “hyperinflammation and cytokine storm syndrome” and subsequently acute cardiac injury and deterioratingcardiovascular disease in COVID-19 patients. However, no targeted medication or vaccines for COVID-19 are yet available. The management of cardiovascular disease in patients with COVID-19 include general supportive treatment, circulatory support, other symptomatic treatment, psychological assistance as well as online consultation. Further work should be concentrated on better understanding the pathogenesis of COVID-19 and accelerating the development of drugs and vaccines to reduce the cardiac disease burden and promote the management of COVID-19 patients, especially those with a severe disease course and cardiovascular complications

    Nodal and Nematic Superconducting Phases in NbSe2_2 Monolayers from Competing Superconducting Channels

    Get PDF
    Transition metal dichalcogenides like 2H-NbSe2_2 in their two-dimensional (2D) form exhibit Ising superconductivity with the quasiparticle spins are firmly pinned in the direction perpendicular to the basal plane. This enables them to withstand exceptionally high magnetic fields beyond the Pauli limit for superconductivity. Using field-angle-resolved magnetoresistance experiments for fields rotated in the basal plane we investigate the field-angle dependence of the upper critical field (Hc2_2), which directly reflects the symmetry of the superconducting order parameter. We observe a six-fold nodal symmetry superposed on a two-fold symmetry. This agrees with theoretical predictions of a nodal topological superconducting phase near Hc2_2, together with a nematic superconducting state. We demonstrate that in NbSe2_2 such unconventional superconducting states can arise from the presence of several competing superconducting channels

    Nodal and Nematic Superconducting Phases in NbSe2_2 Monolayers from Competing Superconducting Channels

    Get PDF
    Transition metal dichalcogenides like 2H-NbSe2_2 in their two-dimensional (2D) form exhibit Ising superconductivity with the quasiparticle spins are firmly pinned in the direction perpendicular to the basal plane. This enables them to withstand exceptionally high magnetic fields beyond the Pauli limit for superconductivity. Using field-angle-resolved magnetoresistance experiments for fields rotated in the basal plane we investigate the field-angle dependence of the upper critical field (Hc2_2), which directly reflects the symmetry of the superconducting order parameter. We observe a six-fold nodal symmetry superposed on a two-fold symmetry. This agrees with theoretical predictions of a nodal topological superconducting phase near Hc2_2, together with a nematic superconducting state. We demonstrate that in NbSe2_2 such unconventional superconducting states can arise from the presence of several competing superconducting channels

    Association of TIMP4 gene variants with steroid-induced osteonecrosis of the femoral head in the population of northern China

    Get PDF
    Background In clinical treatment, the use of steroid hormones is an important etiological factor of non-traumatic osteonecrosis of the femoral head (ONFH) risk. As an endogenous inhibitor of matrix metalloproteinases (MMPs) in the extracellular matrix, the expression of tissue inhibitors of metalloprotease-4 (TIMP4) plays an essential role in cartilage and bone tissue damage and remodeling, vasculitis formation, intravascular thrombosis, and lipid metabolism. Methods This study aimed to detect the association between TIMP4 polymorphism and steroid-induced ONFH. We genotyped seven single-nucleotide polymorphisms (SNPs) in TIMP4 genes and analyzed the association with steroid-induced ONFH from 286 steroid-induced ONFH patients and 309 normal individuals. Results We performed allelic model analysis and found that the minor alleles of five SNPs (rs99365, rs308952, rs3817004, rs2279750, and rs3755724) were associated with decreased steroid-induced ONFH (p = 0.02, p = 0.03, p = 0.04, p = 0.01, p = 0.04, respectively). rs2279750 showed a significant association with decreased risk of steroid-induced ONFH in the Dominant and Log-additive models (p = 0.042, p = 0.028, respectively), and rs9935, rs30892, and rs3817004 were associated with decreased risk in the Log-additive model (p = 0.038, p = 0.044, p = 0.042, respectively). In further stratification analysis, TIMP4 gene variants showed a significant association with steroid-induced ONFH in gender under the genotypes. Haplotype analysis also revealed that “TCAGAC” and “CCGGAA” sequences have protective effect on steroid-induced ONFH. Conclusion Our results indicate that five TIMP4 SNPs (rs99365, rs308952, rs3817004 rs2279750, and rs3755724) are significantly associated with decreased risk of steroid-induced ONFH in the population of northern China

    Learning from experience in Hangzhou: WLCE leisure experience research opportunity

    Get PDF
    This text was collaboratively written by the 12 students – from Brazil, Canada, China, Hong Kong and Hungary – who participated in the WLCE Leisure Experience Research Opportunity, a fieldwork project focusing on resident, national and international visitors to the Chinese city of Hangzhou. The project, designed and implemented by the WLO, was supported by the Hangzhou Municipal Bureau of Commerce and Hangzhou Commerce and Tourism Group, and supervised by Dr. Marcel Bastiaansen (Breda University of Applied Sciences, the Netherlands), Dr. Marie Young (University of the Western Cape, South Africa) and Dr. Isabel Verdet (WLO Secretariat)

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    • …
    corecore