238 research outputs found

    GIS-based multi-criteria analysis for land use suitability assessment in City of Regina

    Full text link

    A Control Strategy for Single-phase Grid-Connected Inverter with Power Quality Regulatory Function

    Get PDF
    A single-phase grid-connected inverter system based on LCL filter is established,which combines the features of inverter and active power filter. A composite control strategy for grid-connected inverter with the function of implementing reactive power compensation and harmonic compensation in the grid-connected power generation is proposed. Firstly, grid-connected inverter system structure and model is analyzed. A quasi-Proportional Resonant control method to gain the control of grid-connected fundamental wave current containing reactive power compensation current as well as the control of harmonic compensation currents is put forward; then the calculation methods of  composite control command current based on both second order generalized integrator-quadrature signal generator (SOGI-QSG) and instantaneous reactive power theory are given. Finally, the effectiveness of the control strategy proposed in this paper is verified by simulation. DOI : http://dx.doi.org/10.11591/telkomnika.v12i1.3911

    G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells

    Get PDF
    Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4) is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis

    Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues

    Get PDF
    The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.United States. National Institutes of Health (1-U01-NS090473-01

    A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature

    Get PDF
    Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex. SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development

    Prenatal diagnosis of fetuses with ultrasound anomalies by whole-exome sequencing in Luoyang city, China

    Get PDF
    Background: There is a great obstacle in prenatal diagnosis of fetal anomalies due to their considerable genetic and clinical heterogeneity. Whole-exome sequencing (WES) has been confirmed as a successful option for genetic diagnosis in pediatrics, but its clinical utility for prenatal diagnosis remains to be limited.Methods: A total of 60 fetuses with abnormal ultrasound findings underwent karyotyping or chromosomal microarray analysis (CMA), and those with negative results were further subjected to WES. The identified variants were classified as pathogenic or likely pathogenic (P/LP) and the variant of uncertain significance (VUS). Pregnancy outcomes were obtained through a telephone follow-up.Results: Twelve (20%, 12/60) fetuses were diagnosed to have chromosomal abnormalities using karyotyping or CMA. Of the remaining 48 cases that underwent WES, P/LP variants were identified in 14 cases (29.2%), giving an additional diagnostic yield of 23.3% (14/60). The most frequently affected organ referred for prenatal WES was the head or neck system (40%), followed by the skeletal system (39.1%). In terms of pathogenic genes, FGFR3 was the most common diagnostic gene in this cohort. For the first time, we discovered five P/LP variants involved in SEC24D, FIG4, CTNNA3, EPG5, and PKD2. In addition, we identified three VUSes that had been reported previously. Outcomes of pregnancy were available for 54 cases, of which 24 cases were terminated.Conclusion: The results confirmed that WES is a powerful tool in prenatal diagnosis, especially for fetuses with ultrasonographic anomalies that cannot be diagnosed using conventional prenatal methods. Additionally, newly identified variants will expand the phenotypic spectrum of monogenic disorders and greatly enrich the prenatal diagnostic database

    T cell-related ubiquitination genes as prognostic indicators in hepatocellular carcinoma

    Get PDF
    BackgroundT lymphocytes, integral to the adaptive immune system, wield pivotal influence in bolstering anti-tumor responses, and are strictly regulated by ubiquitination modification. The objective of this investigation was to devise a novel prognostic and immunotherapeutic efficacy predictor for hepatocellular carcinoma patients utilizing T cell-related ubiquitination genes (TCRUG).MethodThe single-cell RNA sequencing (scRNA-seq) data and bulk RNA data of HCC patients are derived from the GEO database and TCGA database. Based on the processing of scRNA-seq, T cell marker genes are obtained and TCRUG is obtained. Further combined with WGCNA, differential analysis, univariate Cox regression analysis, LASSO analysis, and multivariate Cox regression analysis to filter and screen TCRUG. Finally construct a riskscore for predicting the prognosis of HCC patients, the predictive effect of which is validated in the GEO dataset. In addition, we also studied the correlation between riskscore and immunotherapy efficacy. Finally, the oncogenic role of UBE2E1 in HCC was explored through various in vitro experiments.ResultBased on patients’ scRNA-seq data, we finally obtained 3050 T cell marker genes. Combined with bulk RNA data and clinical data from the TCGA database, we constructed a riskscore that accurately predicts the prognosis of HCC patients. This riskscore is an independent prognostic factor for HCC and is used to construct a convenient column chart. In addition, we found that the high-risk group is more suitable for immunotherapy. Finally, the proliferation, migration, and invasion abilities of HCC cells significantly decreased after UBE2E1 expression reduction.ConclusionThis study developed a riskscore based on TCRUG that can accurately and stably predict the prognosis of HCC patients. This riskscore is also effective in predicting the immune therapy response of HCC patients
    corecore