10 research outputs found

    Leaf phenology rather than mycorrhizal type regulates soil nematode abundance, but collectively affects nematode diversity in seven common subtropical tree species

    No full text
    The underlying mechanisms of the relationships between tree species and the soil micro-food web in forest ecosystems remain uncertain, primarily ascribed to an insufficient understanding on how tree functional traits drive soil nematode communities, including in subtropical forests. We investigated the impacts of seven subtropical tree species (evergreen: Pinus massoniana, Mytilaria laosensis, Ilex chinensis, Michelia macclurei; and deciduous: Liquidambar formosana, Quercus acutissima, and Betula luminifera) on the soil nematode communities. We found that the abundance of soil nematodes was not affected by mycorrhizal types, but it was around 83% higher under the deciduous trees than the evergreen trees, indicating the importance of leaf phenology to the abundance of soil nematodes. Nonetheless, both the evergreen and the arbuscular mycorrhizal trees increased soil nematode diversity, resulting from changes in root traits and soil properties. Furthermore, root traits (root C, root N, and root C:N ratio), and soil properties (total C, total N, moisture content, and bulk density) were the best predictors of the community composition of soil nematodes, indicating a key role of resource quality and soil microhabitat in regulating soil nematodes. In contrast, the ectomycorrhizal trees had lower plant parasite and Wasilewska indices, and evenness, whereas the evergreen trees slightly improved the evenness of soil nematodes. This study suggests that tree species affect the soil food web through changes in soil conditions and plant functional traits in subtropical forests

    One-Pot Approach to 1,2-Disubstituted Indoles via Cu(II)-Catalyzed Coupling/Cyclization under Aerobic Conditions and Its Application for the Synthesis of Polycyclic Indoles

    No full text
    A straightforward assembly of 1,2-disubstituted indoles has been developed through a Cu­(II)-catalyzed domino coupling/cyclization process. Under aerobic conditions, a wide range of 1,2-disubstituted indole derivatives were efficiently and facilely synthesized from 2-alkynylanilines and boronic acids. 2-(2-Bromoaryl)-1-aryl-1<i>H</i>-indoles, which were selectively generated in one pot under the Cu catalysis, afforded the indolo­[1,2-<i>f</i>]­phenanthridines via Pd-catalyzed intramolecular direct C­(sp<sup>2</sup>)–H arylation. The one-pot tandem approaches to the polycyclic indole derivatives were also successfully achieved

    Do We Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of RAMIX

    No full text
    From August 22 to September 16, 2012, atmospheric mercury (Hg) was measured from a common manifold in the field during the Reno Atmospheric Mercury Intercomparison eXperiment. Data were collected using Tekran systems, laser induced fluorescence, and evolving new methods. The latter included the University of Washington-Detector for Oxidized Mercury, the University of Houston Mercury instrument, and a filter-based system under development by the University of Nevada-Reno. Good transmission of total Hg was found for the manifold. However, despite application of standard protocols and rigorous quality control, systematic differences in operationally defined forms of Hg were measured by the sampling systems. Concentrations of reactive Hg (RM) measured with new methods were at times 2-to-3-fold higher than that measured by Tekran system. The low RM recovery by the latter can be attributed to lack of collection as the system is currently configured. Concentrations measured by all instruments were influenced by their sampling location in-the-manifold and the instrument analytical configuration. On the basis of collective assessment of the data, we hypothesize that reactions forming RM were occurring in the manifold. Results provide a new framework for improved understanding of the atmospheric chemistry of Hg

    Do We Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of RAMIX

    No full text
    From August 22 to September 16, 2012, atmospheric mercury (Hg) was measured from a common manifold in the field during the Reno Atmospheric Mercury Intercomparison eXperiment. Data were collected using Tekran systems, laser induced fluorescence, and evolving new methods. The latter included the University of Washington-Detector for Oxidized Mercury, the University of Houston Mercury instrument, and a filter-based system under development by the University of Nevada-Reno. Good transmission of total Hg was found for the manifold. However, despite application of standard protocols and rigorous quality control, systematic differences in operationally defined forms of Hg were measured by the sampling systems. Concentrations of reactive Hg (RM) measured with new methods were at times 2-to-3-fold higher than that measured by Tekran system. The low RM recovery by the latter can be attributed to lack of collection as the system is currently configured. Concentrations measured by all instruments were influenced by their sampling location in-the-manifold and the instrument analytical configuration. On the basis of collective assessment of the data, we hypothesize that reactions forming RM were occurring in the manifold. Results provide a new framework for improved understanding of the atmospheric chemistry of Hg
    corecore